

AFRL-IF-RS-TR-2004-122
Final Technical Report
May 2004

SENSOR AGENT PROCESSING SOFTWARE (SAPS)

BAE Systems Integrated Defense Solutions

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. H579

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-122 has been reviewed and is approved for publication

APPROVED: /s/
 RICHARD C. BUTLER II
 Project Engineer

 FOR THE DIRECTOR: /s/
 WARREN H. DEBANY, JR.
 Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MAY 2004

3. REPORT TYPE AND DATES COVERED
FINAL Jun 99 – Aug 03

4. TITLE AND SUBTITLE

SENSOR AGENT PROCESSING SOFTWARE (SAPS)

6. AUTHOR(S)
Steve Beck
Joe Reynolds

5. FUNDING NUMBERS
C - F30602-99-C-0159
PE - 62301E
PR - H579
TA - 16
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

BAE Systems Integrated Defense Solutions
6500 Tracor Lane
Austin TX 78725

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRLIF-RS-TR-2004-122

11. SUPPLEMENTARY NOTES
DARPA Program Manager: Sri Kumar/IPTO/(703) 696-0174
AFRL Project Engineer: Richard C. Butler II/IFGA/(315) 330-1888 Richard.Butler@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The Defense Advanced Research Projects Agency (DARPA) Information Technology Office (ITO) sponsored the
Sensor Information Technology (SensIT) program to develop and then demonstrate technologies for large wireless
networks. Numerous commercial firms, universities, and research laboratories were given contracts to develop specific
technologies required to support the overall objectives. Products from each organization were combined in a common
architecture to demonstrate the capability of large wireless networks when applied to a large number of networked
sensors collaborating to provide battlefield intelligence. BAE Systems, under contract with Air Force Research
Laboratory (AFRL), was primarily responsible for the Sensor Agent Processing Software (SAPS).

This report describes the scientific and technical work performed by BAE Systems under Contract F30602-99-C-0159.
This includes design and development of the processor application software architecture, development of signal
processing algorithms, and implementation of SAPS architecture to support numerous field tests and demonstrations.
The report also describes how the BAE Systems’ SAPS was combined with other key technologies developed by other
SensIT participants to demonstrate that the technologies exist to effectively deploy and utilize large scale sensor
networks. The report also addresses efforts undertaken by BAE systems to leverage the SensIT R&D success to
develop sensor networks that can be deployed and used in environments such as Afghanistan and Iraq.

15. NUMBER OF PAGES14. SUBJECT TERMS
Distributed Sensor Networks, Wireless Networks, Collaborative Signal Processing, Target
Detection, Tracking, Low Power Processing, Low Power Communications, SensIT Nodes 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

79

TABLE OF CONTENTS

1. INTRODUCTION and OVERVIEW ..1

2. BAE Systems SAPS PROGRAM HIGHLIGHTS..2

3. SensIT DATA ARCHITECTURE ...3

4. LOW LEVEL PROCESSING FOR DETECTION..6

5. EVENT PROCESSING...9

6. COLLABORATIVE TRACKING...13

7. HUMAN PRESENCE DETECTION...16

8. BAE Systems WIRELESS SENSOR NODE ...17

9. SITEX00, JULY-AUGUST 2000 ..21

10. SITEX01, MARCH 2001...26

11. SITEX02, NOVEMBER 2001...31

12. BAE TESTBED IN-BUILDING TRACKING, July 2002..34

13. BAE TESTBED OUTDOOR TRACKING, AUGUST 2002..36

14. CONCLUSION ..40

APPENDIX A: BAE Repositories API ...41

APPENDIX B: Example Repository Polling Code ..51

APPENDIX C: BAE Low Level Signal Processing..59

APPENDIX D: CONFERENCE PAPERS ...61

i

ii ii

LIST OF FIGURES

Figure 3-1 SAPS Processing and Data Persistence Architecture..3
Figure 3-2 SAPS Node Network Processing Architecture ...4
Figure 3-3 WINS 1.0 Node Hardware Processing Architecture ...5
Figure 3-4 WINS 2.0 Node Hardware Processing Architecture ...5

Figure 4-1 Low Level Acoustic Processing Flow...6
Figure 4-2 Low Level Seismic Processing Flow ..6
Figure 4-3 Low Level PIR Processing Flow...7
Figure 4-4 Filter Descriptions...7
Figure 4-5 Down Sample Filters...8
Figure 4-6 Time Stamp Processing of Down Sampled Data ..8

Figure 5-1 Acoustic Detection Processing Flow ..9
Figure 5-2 Seismic Detection Processing Flow..10
Figure 5-3 PIR Detection Processing Flow ..11
Figure 5-4 PIR Performance Characterization Study ...11
Figure 5-5 PIR Performance...12

Figure 8-1 BAE Systems Wireless Sensor Node Overview ...17
Figure 8-2 BAE Systems Wireless Sensor Node Functional Architecture ...18
Figure 8-3 Acoustic Event Processing Flow...19
Figure 8-4 Seismic Event Processing Flow ..20
Figure 8-5 Sensor Fusion and Node Collaboration Processing Flow ...20

Figure 9-1 Sitex00 Experiment Laydown...21
Figure 9-2 BAE Systems Sitex00 High Bandwidth Acoustic Sensor Lay Down...22
Figure 9-3 Wideband Sensor Locations..23
Figure 9-4 SITEX00 Wideband Data Collection Activity...24
Figure 9-5 Scenes from Integration Effort..25
Figure 9-6 Collaborative Detection Target Run ...25

Figure 10-1 SITEX01 Tracking Experiment ..26
Figure 10-2 Tracking Experiment Lay Down...27
Figure 10-3 Collaborative Track Processing ..28
Figure 10-4 Sample Imager Capture...28
Figure 10-5 BAE Systems Tracker API ...29

Figure 11-1 BAE Systems Road Side Instruments for SITEX02 ...32
Figure 11-2 BAE Systems Acoustic Arrays at SITEX02 ...33

Figure 12-1 BAE Systems In-Building Experiment Lay Down ...35
Figure 12-2 BAE Systems Urban Test Site ..35

Figure 13-1 BAE Systems Austin Test Bed Experiment Locations ...36
Figure 13-2 BAE Systems Experiment Environments ...37
Figure 13-3 BAE Systems Test Bed Node Configuration ..37
Figure 13-4 BAE Systems Test Bed Experiment Roadside Activity..38
Figure 13-5 BAE Systems Test Bed Experiment Parking Lot Activity..39

Figure 14.1 BAE Systems Wireless Sensor Node ..40

iii

ACKNOWLEDGEMENTS

The authors sincerely appreciate the efforts of Carl Bott and Charles Kiers to provide insight and
understanding into the vital role of sensor networks in battlefield environments.

 1

1. INTRODUCTION and OVERVIEW

The purpose of the DARPA SensIT program was to develop and then demonstrate technologies
for large wireless networks. The application chosen to highlight the networking capabilities was
sensor systems; fields with large numbers of sensor nodes collaborating to provide intelligence.
A number of leading experts from industry, government laboratories, and academia were
selected to perform research and develop applications for the nascent field of wireless sensor
networks. The eventual goal of the program was to demonstrate technology that could be
massively deployed, self configured, and run autonomously, sensing and making decisions for a
long period of time.

The original contractors that started on SensIT included:
BBN Technologies - Integrator
Sensoria - Hardware for wireless sensor nodes
BAE Systems - Sensor agent processing (detection and tracking) software
USC-ISI - Diffusion routing networking software
MIT-LL - Dynamic declarative networking software
UCLA - GRAB self configuring sensor net protocols, web caching
Cornell University - Cougar object relational database and query
University of Maryland - Declarative sensor tasking language
Penn State University Applied
Research Laboratory (PSU-ARL) - Mobile code and collaborative tracking
NAI - Micro-encryption and network security

BAE Systems, through Sensor Agent Processing Software (SAPS), was chosen to lead the design
of the processor application software architecture and to develop sensor signal processing
algorithms to perform signal enhancement, target detection, classification, and tracking. Because
of the distributed nature of the problem, one of the primary research issues was how to make best
use of the processing capabilities available on a network of nodes under the constraints of low
power processing and very low power and low bit rate communications. The term ‘collaborative
processing’ was used to describe algorithm research under those constraints.

BAE Systems developed algorithms for three sensing modes; acoustic, seismic, and passive
infrared (PIR) motion sensing. The algorithms reported time of Closest Point of Approach
(CPA). Additionally, BAE Systems designed and developed algorithms for node resident data
persistence. These were in the form of Data Repositories. The repositories became a key
capability in defining collaborative processing algorithms, as each stage of signal processing on
each node and shared across the network was retained for associated utilization. BAE Systems
implemented these algorithms on two versions of the SensIT nodes supplied by Sensoria Inc.,
initially under Microsoft Windows CE and later under Linux. Additionally, BAE Systems
participated in four field exercises, supplying processing software in support of all other teams.
BAE Systems also conducted data collection activities with proprietary equipment and an
extended sensor suite including µradars, magnetometers, and improved acoustic capability.

 2

2. BAE Systems SAPS PROGRAM HIGHLIGHTS

Date SAPS Program Highlights
July 1999 SensIT kickoff at DARPA in Washington DC
Sept BAE collects and processes outdoor voices for detection
Oct SensIT PI Meeting in Marina Del Rey CA.
Nov BAE participated in CAX at 29 Palms, collect acoustic vehicle signatures
Dec Receive WINS 1.0
Jan 2000 SensIT Integration meeting in Boston MA
Feb Devise repository architecture, begin implementation
Mar SensIT PI Meeting in Boston MA.
Apr Begin detection algorithm implementation
May Begin SITEX00 planning
June Begin software integration on WINS 1.0
July SITEX00 at 29 Palms CA. First demonstration of collaborative processing.
Sept Begin SITEX00 data analysis
Oct SensIT PI Meeting in Honolulu, HA
Nov Begin multi-modal sensor detection analysis
Dec Study low power processor architectures and processing capabilities
Jan 2001 Begin imager integration and system testing for SITEX01.
Mar SITEX01 at 29 Palms CA. Demonstrate collaborative target tracking on four

nodes using multi-modal detection and an imager.
Apr SensIT PI Meeting in St. Petersburg, FL
May Begin code conversion to Linux
July Publish BAE Low Level Detection Processing scheme
Aug Publish BAE Detection API
Sept Test code on WINS 2.0
Oct Participate in code integration in Boston
Nov SITEX02 at 29 Palms CA. Demonstrate collaborative detection and tracking

on a large field of nodes.
Jan 2002 SensIT PI meeting in Santa Fe NM. Demonstrate collaborative tracking in a

room and outdoors in a parking lot.
Feb Begin human presence detection algorithm study
Mar Begin BAE low power wireless node design
May Purchase Ember nodes and begin integration
July Demonstrate in the building human detection and tracking
Aug Demonstration with UTK, Auburn, and Penn State BAE Testbed
Sept Begin classifier algorithm for vehicle of interest
Oct Collect data for vehicle classifier study
Nov SensIT PI Meeting in Boston.
Dec Set up additional nodes in the building at BAE Testbed

 3

3. SensIT DATA ARCHITECTURE

Data architecture, specifically data persistence and sharing, was a design focus considered
central to the network collaborative processing architecture (Figure 3-1). Several items went into
choosing the final repository design:
[1] the experimental nature of the program called for retaining and sharing as much of the raw
and intermediate forms of data as feasible,
[2] radio data rates and time synchronization capability indicated that sharing raw time series
was likely infeasible, but this was reexamined with the second hardware version,
[3] sharing retained data should be closely tied to the capabilities of the network Diffusion data
exchange algorithm.

Sensor systems have several scheduling and processing regimes, usually structured in software
as separate tasks or processes with their own resource allocation and scheduling priority settings.
One task is tightly coupled to sensor data input timing and constrained by sensor physics
phenomenon. Another task is signal and information processing, which must run in real-time,
but are not tied to sensor hardware. Finally, there is a task set which is determined by tactical
activity.

A data repository class was
implemented and used to retain
progressive stages of
processing. A Time Series
Repository stored minimally
processed sensor samples and
facilitated sharing data among
SensIT teams that also
developed signal processing
capability. The Time Series
Repository isolated other teams
from details of node hardware
and design changes that
occurred. It also reduced
software congestion by having a
single thread interface with the
sensor interface.

Other repository instances followed the successive stages of sensor processing, retaining more
and more abstract data items. After the time series was low level processed data, such as power
spectra or normalized filter time series. Then, there were detection events, and finally, tracks or
composite target identifications. The repositories proved a valuable technique to store and share
data. Non-signal repositories were developed; a node status repository to retain time dependent
descriptors of the node, and a meta-knowledge repository which retained items such a target
characteristics, query, and tasking settings.

Video

PIR

Acoustic

Seismic

Sensors

Alert

Signal
Processing

Si
gn

al
R

ep
os

ito
ry

Neighboring
Repositories

Information
Processing

In
fo

rm
at

io
n

&
 M

et
a

K
no

w
le

dg
e

R
ep

os
ito

ry

Detection &
Localization
Processing

Control

Physics Based Processing Cycle Decision Theory Based Processing Cycle

Neighboring
Repositories

Sensor

 Network

Sensor

 Network

Query
Processing

T
ac

ti
ca

l
R

ep
os

ito
ry

Sensor

 Network

Neighboring
Repositories

Figure 3-1 SAPS Processing and Data Persistence

Architecture

 4

Repository Architecture & Functionality

Repositories are a mechanism for sharing data on a node among the various tasks and de-
coupling their interaction and timing dependencies. Repositories are a mechanism for sharing
data among nodes of a sensor field. Repositories buffer the data to enable “look-back”
processing and node-node collaborative processing. (Since target kinematics usually means that
what’s “now” at one node is “then” at another node, the time synchronization facility of the
repositories is extremely important in collaboration.)

The BAE Systems repositories are designed to provide an efficient means of storing and
retrieving real time data that is shared between several independent computing processes.
Repositories are defined in tasks that supply data and fill the repositories, and tasks which use
the data subscribe to the repositories to gain access. The tasks utilize operating system specific
signalizing tools to share a common repository. The repositories were interfaced with both the
MIT-LL and USC-ISI versions of DIFFUSION Data Routing. In order to interface with the
repositories, a small static link library was written by BAE Systems. This library provides the
following functionality:

1. Allows a user to connect to a repository, or automatically create a newly initialized one, if

there are currently no users.
2. Add data to a repository.
3. Get the repository header.
4. Retrieve data from a repository.
5. Get a copy of the newest record.
6. Get the position of the newest record.
7. Retrieve historical data.

SAPS Node Software Architecture

A /D &
Front End

Pre proce sor

Signal
Processing

De tec tion
&

Localiza tion

H igh Leve l
Processing

Q uery
Proxy

Sensor
Data

Detec tion
&

Loca liza tion

TS DC HL DS MK
Query

Meta Kn ow ledge
Node
StatusTrack s

& Ev idence

Mobile Code Mobile Code Mobile Code Mobile Co de

Rem ote T S Remote D C Rem ote HL

Dire ct Data X fer

Indirec t Da ta Xfer

Sta tus, Control

Figure 3-2 SAPS Node Network Processing Architecture

 5

The conceptual architecture was implemented on both SensIT sensor node versions (Figure 3-2).
WINS 1.0 nodes had serious hardware limitations due to the I/O between the processor and the
sensors and radios. This was compounded by the scheduling limitations of the WinCE operating
system. The implementation on WINS 1 nodes is shown in Figure 3-3.

These limitations were
addressed during the first
year of SensIT and
corrected in the design of
WINS 2.0 nodes.
Effective network
communication rates
increased by a factor of
500 between versions.
Scheduling restrictions
ceased to be a problem.
The architecture
implementation shown in
Figure 3-4 approached the
ideal.

WINS 2 Node Processing Architecture

Sensor

Acoustic

Seismic

PIR

GPS

Radio 1

Radio 2

SigProc

SigProc

SigProc

SigProc

Sensor
Processing

Repository

Query
Processing

Network
[Diffusion]

Repository

Figure 3-4 WINS 2.0 Node Hardware Processing Architecture

Figure 3-3 WINS 1.0 Node Hardware Processing Architecture

WI NS 1 No de P r o cessi ng Architecture

G P S

S en s or

S en s or

S er i a l
P or t

Sig P

Query

Net

Radio

C
O
N
N
E
C
T
O
R

W
in

C
E

S er i a l
P or t

Sense

Reposit

Pr
ep

ro
ce

ss
in

g

 6

4. LOW LEVEL PROCESSING FOR DETECTION

BAE Systems developed and provided signal processing software matched to the common
research goals to all other SensIT participants. The processing was delivered on WINS 1.0
nodes in time for the SITEX00 experiments at MCAGCC, Twentynine Palms, CA, in
July/August 2000. It was used by MIT-LL, with its version of DIFFUSION, and jointly by
USC-ISI, with its DIFFUSION, by BAE Systems, and by PSU-ARL in a Collaborative Detection
experiment. Revised software was again delivered in September 2001 on WINS 2.0 platform
for integration and use by all participants in SITEX02, held at Twentynine Palms during
October/November 2001.

Process flows for the algorithms are shown below in Figures 4-1 through 4-3. Details of filters
referenced are described by Figure 4-4.

Low Level Acoustic Processing
Pre-Processor Channel 1/4
Pre-Processor Sampling Rate 4960.32 Hz
Pre-Processor Buffer Size 256 Samples
FFT Size 1024 or 992+32 zeros
FFT/Detection Rate 4.8440625 Hz or 5.000322581 Hz

Float and
Gain Norm

xin[256]
xout[256]

Build Array
xin[256]

xout[1024]

Hanning
FFT

xin[1024]
xout[512]

A-DET
xin[512]
xout[1]

FFT
Rep

(float)

TS
Rep

(float)

Subscribers Subscribers

Preprocessor
Channel 1
xout[256]

Data File
in Memory
xout[256]

S
w
i
t
c
h

High Pass
Filter (IIR)

xin[256]
xout[256]

Figure 4-1 Low Level Acoustic Processing Flow

Low Level Seismic Processing
Pre-Processor Channel 2/4
Pre-Processor Sampling Rate 4960.32 Hz
Pre-Processor Buffer Size 256 Samples
Downsampled Rate 496.032 Hz
FFT Size 256 or 248 + 8 zeros
FFT/Detection Rate 1.937625 Hz or 2.000129032 Hz

Float
Gain Norm

xin[256]
xout[256]

Build Array
xin[25.6]
xout[256]

Hanning
FFT

xin[256]
xout[128]

S-DET
xin[128]
xout[1]

TS
Rep

(float)

FFT
Rep

(float)

Subscribers Subscribers

Downsample
ReTimeStamp

xin[256]
xout[25.6]

Preprocessor
Channel 2
xout[256]

Data File
in Memory
xout[256]

S
w
i
t
c
h

High Pass
Filter (IIR)

xin[25.6]
xout[25.6]

Figure 4-2 Low Level Seismic Processing Flow

 7

Low Level PIR Processing
Pre-Processor Channel 3
Pre-Processor Sampling Rate 4960.32 Hz
Pre-Processor Buffer Size 256 Samples
Downsampled Rate 49.6032 Hz
Detection Rate 49.6032 Hz

Float
Gain Norm

xin[256]
xout[256]

P-DET
xin[2.56]
xout[2.56]

TS
Rep

Subscribers

Downsample
ReTimeStamp

xin[256]
xout[2.56]

Preprocessor
Channel 3
xout[256]

Data File
in Memory
xout[256]

S
w
i
t
c
h

High Pass
Filter (IIR)

xin[2.56]
xout[2.56]

Figure 4-3 Low Level PIR Processing Flow

Figure 4-4 Filter Descriptions

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time Domain
Impulse Response
at sample number 20

Frequency Domain
Impulse Response
- Normalized Freq.
 (Nyquist = 1)

Frequency Domain
Impulse Response
- Zoom on Frequency

IIR High Pass Filter
Butterworth Order 1

Phase and Group
Delay as a function
of normalized freq.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3
Group Dela y
Phase D elay

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

10

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-60

-50

-40

-30

-20

-10

0

10

 8

Slower channels were down-sampled due to restrictions in the WINS 2.0 node A/D software
interface, which imposed performance penalties for different sample rates on different channels.
So, the rates were reduced by filtering and retimestamping before insertion into the Time Series
repository. This is shown in Figure 4-5 & 4-6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

10

FIR Low Pass Downsampling Filter
Least Squares Order 48, 72

Cutoff Designed for Downsample by 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

10

Length 48 Length 72

Figure 4-5 Down Sample Filters

 ReTimeStamp Processing

• The downsampling process is accomplished by low pass filtering
 the data, and then selecting every DS sample.
• The filtering is accomplished with an FIR filter of length NF.
• The time stamp will account for the group delay of the FIR filter.

x = 012 3 456 7 89A B CDE F 012 3 ...
TS=3

TS=7
TS=11

For a single downsampling filter of Length=NF, and downsampling rate = DS

For a two stage downsampling process with the following parameters:
Stage 1 = NF1, DS1 and Stage 2 = NF2, DS2

. . 2 , 1 0 i n d e x o u t p u t d d o w n s a m p l e f o r * 1 2 /) (. , i D S i N F i T S = + − =

. . 2 , 1 0 i n d e x o u t p u t d d o w n s a m p l e f o r

) 2 * 1 * () 1 2 / 1 * 2 () 1 2 / 1 () (
. , i

D S D S i D S D S N F N F i T S
=

+ − + − =

E.g. NF=8, DS=4

Figure 4-6 Time Stamp Processing of Down Sampled Data

 9

5. EVENT PROCESSING

SensIT common experiment and demonstration goals involved detection (and tracking) of
various vehicle targets and query processing to report the detections. Detection and reporting
time of Closest Point of Approach (CPA) was consistent with the goals. High Pd and low Pfa
algorithms for this were developed and delivered. Other groups used the low level signal
processing capabilities and developed bearing estimation algorithms, both single-node and multi-
node collaborative. The CPA detections were used by BAE Systems in implementing a
distributed Kalman Tracking capability demonstrated at SITEX01. Xerox PARC developed a
probabilistic tracker using signal strength estimates and showed it at the final PI meeting. PSU-
ARL and Fantastic Data each developed a tracker using low level signal repository data. Several
groups attempted classifiers.

BAE Systems based the detection processing on signal physics, on kinematic constraints, and on
analysis of field data from WINS sensors. Sensors were characterized in BAE Systems
laboratories and calibration settings were used in processing and shared with other groups as
requested. Significant differences were found with some microphones and with most PIR
sensors; these were adjusted by Sensoria Inc.

Event processing for Acoustic, Seismic, and PIR are shown in Figures 5-1 through 5-3.

Acoustic Detection Processing
The acoustic detection processing is based on the scheme proposed at the April 2000 PI meeting in Boston.
Several changes were necessary due to changes in the sampling rate and to account for heuristics.
The outputs of detection processing are stored in the High Level Event Detection Repository.

Input data rate = 5000 Hz
Detection frame rate = 5 Hz
Detection time resolution = .2 seconds
Detection latency = 2 seconds

Input
Data
x[1024]

Bandpass
Filter

Target
Model
Feature
Extraction

Likelihood
Ratio
Test

Score
Normalization

Normalization
Parameters

Confidence

Binary Detection

Time Stamp

Detection
Latency
Heuristics

Background
Model
Features

Detection
Thresholds

Time Stamp

Speed and
Distance
Estimation

Speed

Distance

Developmental

Figure 5-1 Acoustic Detection Processing Flow

 10

Developmental

Seismic Detection Processing
The seismic detection processing is based on the scheme proposed at the April 2000 PI meeting in Boston.
Several changes were necessary due to changes in the sampling rate and to account for heuristics.
The outputs of detection processing are stored in the High Level Event Detection Repository.

Input data rate = 500 Hz
Detection frame rate = 5 Hz
Detection time resolution = .2 seconds
Detection latency = 2 seconds

Input
Data
x[100]

Bandpass
Filter

Target
Model
Feature
Extraction

Likelihood
Ratio
Test

Score
Normalization

Normalization
Parameters

Confidence

Binary Detection

Time Stamp

Detection
Latency
Heuristics

Background
Model
Features

Detection
Thresholds

Speed and
Distance
Estimation

Speed

Distance

Figure 5-2 Seismic Detection Processing Flow

PIR sensors are attractive low power, low cost sensors. Their data rate is low, enabling them to
be processed by very simple processors. In support of human presence detection experiments,
BAE Systems studied PIR sensors as initial cueing devices. PIRs had been used under a variety
of outdoor conditions: summer desert, spring desert, spring wet/rain, and winter freezing. Indoor
controlled tests were run to characterize performance. The experiment conditions and
performance curves are shown in Figure 5-4 and Figure 5-5. The WINS sensor units were
temperature characterized to support a wider range of operation; false alarms were more
numerous below 20F. Also note that the PIR mechanism lends itself to determining the direction
of target motion.

 11

PIR Detection Processing
The PIR detection processing is based on the scheme proposed at the April 2000 PI meeting in Boston.
Several changes were necessary to account for heuristics.
The outputs of detection processing are stored in the High Level Event Detection Repository.

Input data rate = 50 Hz
Detection frame rate = 5 Hz
Detection time resolution = .2 seconds
Detection latency = 2 seconds

Input
Data
x[10]

Target
Model
Feature
Extraction

Background
Model
Features

Likelihood
Ratio
Test

Detection
Thresholds

Score
Normalization

Normalization
Parameters

Confidence

Binary Detection

Time Stamp

Detection
Latency
Heuristics

Amplitude
Zero Crossing
Polarity Direction

Figure 5-3 PIR Detection Processing Flow

Study Conditions

 Three nodes deployed on the floor,
along wall in a vacant lab space with

4m spacing

 Sensors arranged so beams are
horizontal = 0¼, 25¼, and 45¼

 Working area blocked from sensors

by 5’6” panels, cabinet blocks view
of doorway

 Lights are Off, room has windows

 Targets are four different people,
from 6’2” to 5’4”

 Tracks are at two distances to the
sensors to correspond to typical
rooms and hallways

 1.5m

 4m

 Tracks are at three speeds

 a slow pace like a sneak search

 A normal walk

 Slow run/jog

North Windows
Exterior

Interior 4m

Room 12m x 12m

Close Track

Far Track

• PIR Observed Performance
• Spring Desert Conditions

• Vehicles - 20/60m
• People - 20m

• Summer Desert Conditions
• Vehicles - 60m
• Troops - 30m

• Fall Desert Conditions
• Vehicles - 120m
• Troops - 30m

• Winter Urban Conditions
• Vehicles - 20m
• People - 15m

• Indoor
• Space Limited

Figure 5-4 PIR Performance Characterization Study

 12

PIR ROC for Indoor Detection

Pdet = 1
Pfa = 1x10**-25

Figure 5-5 PIR Performance

 13

6. COLLABORATIVE TRACKING

6.1 Vehicle Tracking

BAE Systems developed a distributed collaborative vehicle tracker for a demonstration
experiment at MCAGCC, 29 Palms, in March of 2001 at SITEX01. The tracker was to cue an
imager and the experiment and node lay-down is discussed in Section 9.

The tracker was a two dimensional Kalman tracker which used time of target closest point of
approach (CPA) at nodes in the sensor field to estimate Latitude and Longitude components of
motion. Nodes collaboratively built a map of the sensor field at power-on. Each node measured
its location by GPS using UTM coordinates, which are a localized Cartesian plane. (Due to the
limited extent of the sensor field, altitude was ignored.) When a node had successfully localized
itself, the Diffusion data exchange facility was used to share its status and configuration,
including sensor compliment, imager capability, and UTM coordinates, with other nodes in the
area of the sensor field. Each node subscribed to CPA events from neighboring nodes. Thus, as
a target entered the field, nodes at the entrance point could determine it was a new target due to
their edge position and lack of a CPA corresponding to the target. The first node (or nodes in the
unlikely case of simultaneous detection) created a track and published to Diffusion their Node-
ID, Time of CPA, and Track ID. Subsequent detecting nodes associated their CPA with an
existing track based on vehicle kinematic characteristics, and published their track packet.
Simple target speed was usually sufficient to correctly link a CPA with active tracks, but track
association could be augmented with meta-knowledge of roads through the field or other a-priori
weights for a Bayesian decision algorithm. Each node in the field subscribed through Diffusion
to receive track packets. So, as CPA events were published, each node could independently cycle
a local copy of the Kalman Tracker on receipt of the track packet from Diffusion. Tracks were
deleted by nodes at the edge of the sensor field or when they failed to be updated for a period of
time. The track packets were 54 bits in length, consisting of the minimum information: Packet-
Type, source Node-ID, and Time. The imager node used the track estimate of time-in-field-of-
view to control its digital camera, which had a 5 second latency from trigger to image capture.

During operation a track table maintains a sequence of track points, described below, and
experiment specific binary data defined inside associated algorithms, but allocated in the track
table.

Track point layout:
{ common information that can be provided to and handled by a collaborating user. }
id string, { id of track, arbitrary text }
time double, { time of detection, UTC, seconds since 1jan70 (system clock) }
{ target state information }
zone byte, { UTM zone reference, -1 means unknown }
pnorth double, { estimated location, meters north of reference point }
peast double, { estimated location, meters east of reference point }
pvalid boolean, { T=location was estimated; F= location not estimated}
vnorth double, { estimated velocity in m/s, northerly component}
veast double, { estimated velocity in m/s, easterly component }

 14

vvalid boolean, { T=velocity was calculated; F=velocity not calculated}
class byte, { target classification}
cvalid boolean, { T=classification computed; F=classification not
computed}
{ tracker-specific information follows}
{ GUI will not understand without augmentation }
typecode string, {specifies tracker-type}
trackspec blob {tracker-specific fields – for example, this is where confidence }
{ or accuracy values would go, covariance matrices, probability }
{ grid, etc.}

Notes:
This layout is called Track point because typically, a sequence of such records, all with
the same ID, makes up a target path (track). Thus, id is an id for a track, and each track
point will carry that id for accumulating the track itself. All trackers must provide some
sort of id for a track. The assumption will be that multiple track points with the same id
are points on the same track.
Defaults and assumptions by the GUI are:
time is the time a vehicle is at the estimated location. Default 0 (won’t be displayed)
Zone, pnorth, peast will be valid UTM values (in the zone the GUI is working)
whenever pvalid is True.
Vnorth,veast are estimates of speed of the target identified by zone, pnorth, peast, time.
Default 0,0.
Classification codes are defined below.
pvalid, vvalid, cvalid have default values of False.
example of trackspec for typecode = “Kalman”
bloblength double,
cov11 f32, { covariance matrix from Kalman filter }
cov12 f32,
cov13 f32,
cov14 f32,
cov22 f32,
cov23 f32,
cov24 f32,
cov33 f32,
cov34 f32,
cov44 f32
Classification codes
These codes were used in a joint experiment with Penn State University Applied Research
Laboratory (PSU-ARL); note that codes 0-9 are features and 10 and up are target types. PSU-
ARL provides features (weight and method of locomotion) in addition to a code book value (this
additional information would go in their blob) – although any of these code values could be used
by a track display. For example, if we just know that the target is wheeled, the GUI could display
just that information.
UNKNOWN=-1;
WHEEL=0;

 15

TRACK=1;
LIGHT=2;
HEAVY=3;
Buzzer=10;
Motorcycle=11;
TruckGas=12;
TruckDiesel=13;
BuzzerRed = 14;
BuzzerBlue = 15;

6.2 Personnel Tracking

As part of a focus on sensing support for small fire teams in complex terrain, BAE Systems
adapted the vehicle tracking algorithm to use inside buildings. The Kalman algorithm was kept,
but default kinematic assumptions were set for humans walking, instead of the SITEX01 vehicle
kinematics. Constraints were applied to the association of CPA with Track-ID, based on a
hallway’s allowed paths and any node sequencing which hallways provide. The person tracking
experiments investigated the feasibility of determining a target’s Red/Blue classification by
maintaining movement history and feasibility of inferring control of an area by relative
population count. The experiments are discussed in Section 12. Associated efforts to detect and
identify humans are presented in Section 7.

 16

7. HUMAN PRESENCE DETECTION

BAE Systems conducted a series of experiments in detecting human presence and distinguishing
people from animals and natural phenomena, and to detect human presence when masked by
vehicle noises. Some of the efforts were conducted under other projects, such as APLA Track 4
(the RATTLER Project), but jointly used in SensIT or with SensIT data sets, or sharing portions
of SensIT developed algorithms, or verified during SensIT experiments. These efforts eventually
led to SensIT partially funding the development of a special miniature, low power sensor node
specifically for human detection. The node is described in Section 8.

Sensing Modes:

Microradar – a very low power ultra wideband microradar was used during RATTLER (May
2001) to detect and identify distinctive human activities, such as walking, sweeping a mine
detector, and crawling. The data used was limited and from local sources. The radar was again
used during SITEX02 to collect signature data on all target vehicles and on two battalions of
marching and lounging Marines.

Magnetometer – a miniature magnetometer was developed by BAE Systems for RATTLER,
based on a design from University of California, Berkley, which was used by Kris Pister of
Berkley under SensIT during SITEX01 (March 2001). While the magnetometer suffers from
transducer issues, has limited detection range, and has a high power draw, it is a perfect indicator
of human presence. Only humans, or domesticated animals associated with humans, move metal
and are thus detectable by a stationary magnetometer. The sensor developed uses a small (18 pin
flat pack) 2-axis magneto resistive magnetometer from Honeywell. The analog interface nulls
the Earth’s field (thus providing a compass) and amplifies the sensor output with a 0.1Hz-2.0Hz
bandpass. This response is sufficient to resolve human movement over detectable ranges.

Passive Infra Red Motion Detector – The PIR was a primary SensIT sensing mode and proved
useful in human presence detection. BAE Systems was able to develop a highly reliable (Pd
approaching 1 and Pfa of 10-25. The PIR is a cueing sensor for other classification modes. The
PIR performance is described in Section 5.

Acoustic – Human speech is a good indicator of people. An algorithm was developed under
IRAD and ported to the SensIT Sensoria WINS 2.0 nodes and to the Wireless Sensor Node
described in Section 8. The original goal for the node was to detect humans in quiet
environments, with speech a prime indicator.

Seismic – Seismic activity is a useful discriminator of weight and use of a seismic sensor in
conjunction with a simple PIR cueing sensor allows a sensor to ignore small animals. Walking,
by un-alerted people or animals, produces distinctive patterns. These must be distinguished from
rain drops and by themselves have a moderately high Pfa, but they provide a powerful
confirming indicator in combination with other sensing.

 17

8. BAE Systems WIRELESS SENSOR NODE

Following the SensIT PI meeting in Santa Fe, NM, BAE Systems was tasked to build a limited
number of sensor nodes intended to detect human presence in sparse desert conditions. The
architecture of the nodes was unspecified, but it was expected to be built up on the SensIT
experience. BAE Systems constructed eight nodes during the February to July interval.
Integration was delayed waiting on early deliverable of Ember Corp radios. The node hardware
overview and architecture are shown in Figure 8-1. The algorithms for motion and seismic
activity were based on SensIT work. Speech detection, vehicle identification, footstep detection,
and magnetic processing were based on BAE Systems algorithms. The radio supplier, Ember
Corp, was a SensIT participant with new venture capital.

Lab Nodes

Integrate

Alert

Signal
Processor

Flash

Message
Processor

Radio A/D

Filter

Filter

Filter

Filter

Power
Management

SPI Serial Serial

RAM Flash

Digital Radio Sensor

3.5” Dia .

Figure 8-1 BAE Systems Wireless Sensor Node Overview

Several sensors are accommodated on the node, with acoustic, seismic, and a motion detection
mode chosen for initial implementation. The nodes have a power cycling ‘sleep’ mode with an
analog wake-up signal. A long period filter measures background, and if short term signals
exceed a LLR threshold, the unit is activated. It can begin processing immediately by using the
background filter as its noise estimate.

 18

The units were designed to maximize battery life and can run indefinitely on 4”sq of solar cells
and rechargeable batteries. They use a low power signal processor chip. It digitizes sensor time
series with an A/D via an SPI interface and DMA transfer to RAM. Processing of the various
channels and multi-node collaboration is shown in Figure 8.2 through 8.5. Alerts are passed via
an SPI interface to an Ember radio, which links individual sensors to a gateway node for a final
link to users. The power design is successful and battery life when fully active, not duty cycling,
exceeds 5 days on D-cell batteries. Approximately 30,000,000 contact identifications are
accommodated, with 50,000 radio reports.

The radios automatically form a mesh network. Redundant routing and load sharing are
implemented. The mesh router allows operation in complex terrain, which blocks single link
networks. The radios are direct sequence spread spectrum in the 915MHz band and follow
802.15 standards. Reports and radio transmissions are independently encrypted with AES 128bit
algorithms.

Sensor Node Architecture

Pre Amp
& Analog

Band Pass

Background
Estimate

Filter

Alert
Filter

Wake-Up
Alert

A/D &
FIFO Buffer

DSP
Signal

Processing

On-Node
Alert

Identification

Collaborative
Cross-Node

Alert
Clarification

Node
Radio &

Networking

Signal
Repositories

& Data
Persistence

Sensor

Power
Management

¥Very low power continuous monitor wakes signal processor.
¥On-node analysis performed to verify and characterize events.
¥Cross-node processing confirms events with multiple looks
and different sensor types.
¥Networked sensors estimate contact characteristics, such as
number of people & animals, vehicles, and presence of radios.

Figure 8-2 BAE Systems Wireless Sensor Node Functional Architecture

 19

 Acoustic Indicator Processing

 Processing for Transient
Signals & Events

 Processing for Many
Indicators & Features

 Combination & Association
Using Meta-Knowledge

Bandpass
Signal
Input

Transient
Spectrum
Analysis,

50ms interval

Band Pass
Energy

Detection

Transient
Feature
Analysis

Temporal
Variation in
Cepstrum

Harmonic
& Modulation

Analysis

Bayesian

Combination

Association

Collaboration
& Contact

Characterization
[Type,Count,
Significance]

Analysis of
Persistent

Effects

Figure 8-3 Acoustic Event Processing Flow

 20

 Seismic Indicator Processing

 Processing for Transient Signals
& Events

 Processing for Many Indicators &
Features

 Combination & Association
Using Meta-Knowledge

Bandpass
Signal
Input

Transient
Spectrum
Analysis,

50ms interval

Transient
Feature
Analysis

Bayesian
Feature

Combination

Temporal
Association

Collaboration
& Contact

Characterization
[Type,Count,
Significance]

Analysis of
Repetitive

Effects

Band Pass
Energy

Detection

Figure 8-4 Seismic Event Processing Flow

 Collaboration and Alert Generation

 Collaborative, Situation
Sensitive, Alert Processing

 Effectively Utilizes Many
Detection Features, Sequence,
and Context to Produce Alarms

Local
Situation

Meta-Knowledge

Feature
Statistics

Sequence of
Feature Vectors

Temporal
Bayesian
Processor

Local
Persistence

Network
Collaborative
Persistence

Network
Collaborative

Situation
Meta-Knowledge

Report
On Command

Figure 8-5 Sensor Fusion and Node Collaboration Processing Flow

 21

9. SITEX00, JULY-AUGUST 2000

SensIT conducted demonstration experiments at the Marine Corps Air Ground Combat Center
(MCAGCC), at Twentynine Palms CA during July and August of 2000. The site was in the
eastern ranges at the south entrance to the Prospect as shown in Figure 9-1.

Figure 9-1 SITEX00 Experiment Laydown

 BAE Systems supplied signal processing algorithms and software running on the Sensoria
WINS 1.0 nodes for the exercise. The routines included time series signals, spectral signals,
detection CPA events, and repositories.

BAE Systems extended their involvement past the nominal SITEX00 activity of signal collection
using the WINS 1.0 nodes. Acoustic response on WINS 1.0 nodes was not sufficient to detect a
vehicle horn at 10m. BAE Systems deployed a company developed acoustic data collection
system to record high quality signals. BAE Systems also collaborated with ISI-W, MIT-LL, and
PSU-ARL to integrate a collaborative vehicle detection application. The integrated system was
tested on the last day of SITEX00.

Approximate
Summer

prevailing
winds

Eastern checkpoint
~500m

Northern checkpoint
(~290m to Group #2)

Western checkpoint,
~410m

Defile

Group #2
~1030m

Group #1

Lightly used cut-off

Shifted CAX vehicle
staging area Preferred base camp

~300m

2nd
Alternate
base camp

1st alternate base camp
~230m

In
te

r-
gr

ou
p

ca
bl

e
ru

n

Bright Green is
distance from
intersection

200 m

400 m

600 m

1000 m

800 m
White circles labeled C1-
C7: Group 3 nodes (along

the road). Red arrow
shows IR sensor MRA.

C1

C4
C3

C2

C5

C6

C7

Sensor Laydown Big
picture, Group 3.

 22

BAE Systems Acoustic Data Collection System:

Several microphone arrays were deployed. They used GEXTEX 3307-5 electret microphones
and pre-amp/line drivers to return signals over 300m lines to an IOtech 8-channel 12bit A/D,
which was interfaced to a Dell laptop computer. Isolation transformers were used to control
noise over the long distance lines. The laydown is shown in Figure 9-2 and Figure 9-3.

Figure 9-2 BAE Systems SITEX00 High Bandwidth Acoustic Sensor Lay Down

Installation was to secure unique scenario data and to investigate issues such as propagation
effects. Eight omnidirectional microphones were deployed with variable spacing along the
North-South road, starting with SensIT node C1 and extending 800m north to the defile. These
nodes were serviced from a tent at node C4. They collected data for meso scale effect such as
widely spaced signal coherence and propagation over a 50m to 150m distance. At node 4, two
microphones were deployed; one at the height of Sitex00 nodes and one at 4” above the ground
to investigate vertical propagation and ground heating effects. (Day time temperature at ground
level reached 125F by 10am.)

200 m

400 m

600 m

1000 m

800 m

Inter

Group A- Investigate Sensor
Configuration & Angular
Discrimination Capability in
Complex Situations and
Record Simultaneous
Detection Traces

Group C -
Investigate
Simultaneous
Signature Range
Effects And
Record
Sequential
Detection Traces

C1
C2
C3

C4/C8

C5

C6

C7

Line
Array

Planar
Array

Omni Omni

Omni

Omni

Tetra

Tetra

 23

Additionally, four omni microphones and four compact microphone arrays were deployed at the
main road intersection. Two tetrahedron arrays, with 9cm element spacing, were deployed north
and south of the intersection. An eight microphone line array, with 6cm element spacing, and a
2x4 microphone panel array, with 9cm spacing, were deployed next to the northern tetrahedron.
These sensors were to investigate small scale effects such as closely spaced signal coherence and
the utility of complex sensor configurations.

Figure 9-3 Wideband Sensor Locations

S e n sor Lo c at i o n s A l o n g th e N orth-South Road

S e n sor De s cr ip t i o n Latitude Lo n g itu d e
C1 34'16'17.4 116'01'36 . 1
C2 34'16'19.0 116'01'36 . 4
C3 34'16'20.8 116'01'35 . 7
C4 34'16'24.0 116'01'35 . 0
C5 34'16'27.1 116'01'34 . 3
C6 34'16'30.4 116'01'34 . 3
C7 34'16'36.9 116'01'33 . 9
C8 34'16'24.0 116'01'35 . 0

Whe r e C1 was c l os e s t t o t he i n t ersection and C4 and C8 were at the sam e l oc a t i on . All
s e nso r s we r e a pprox im a t e l y 1 meter off the ground with the exception of C8 wh i ch was
10 cen tim e t er s o ff t he ground .

S e n sor Lo c at i o n s at t h e I n t er s ection

S e n sor De s cr ip t i o n Latitude Lo n g itu d e
L = L i ne a r a rray 34'16'14.8 116'01'34 . 7
P = Pl ana r a rr ay 34'16'14.8 116'01'34 . 7
Q = t e tr ahed r on 34'16'13.7 116'01'34 . 7
R = t et rah e dron 34'16'14.8 116'01'34 . 7
T 9 = s i ng l e o m n i ac ous ti c 34'16'13.8 116'01'35 . 2
T 10 = s i ng l e o m n i a c ous ti c 34'16'14.3 116'01'35 . 2
T 11 = s i ng l e o m n i a c ous ti c 34'16'15.1 116'01'35 . 1
T 12 = s i ng l e o m n i a c ous ti c 34'16'14.3 116'01'34 . 0

Wideband Sensor Locations
(as measured by a handheld GPS)

 24

Scenes from the wideband data collection exercise are shown below in Figure 9-4. The cooler
seen was used with ice and a fan to control the temperature for the computer and IOtech A/D. A
typical day used 25lbs of cooling ice.

Figure 9-4 SITEX00 Wideband Data Collection Activity

Collaborative Detection System Integration on WINS 1.0 Nodes

Concurrent with the wideband data collection effort conducted at Twentynine Palms, the team of
BAE Systems, ISI-W, MIT-LL and PSU-ARL worked at the ISI-W offices at Marina Del Ray,
CA, to integrate a multi-node collaborative detection system, which was demonstrated at the end
of Sitex00. For this effort, BAE Systems supplied signal processing and storage repositories to
enable sharing for collaboration. PSU-ARL supplied multi-node decision algorithms. ISI-W and
MIT-LL each supplied (competing) data communication routing algorithms to facilitate efficient
localized communication among nodes. The integration extended over approximately one month
and enabled comparison of two different versions of ‘Diffusion Routing’ algorithms, written to
the same API over the preceding year by the ISI-W and MIT-LL teams. The integration effort
salvaged year long software development work of all team members. It resulted in the discovery
of a bug in the WINS 1.0 node radio code, and resulted in a successful experiment in multi-node
collaboration. Integration activity at ISI-W offices is shown in Figure 9-5. A detection run at
MCAGCC is shown in Figure 9-6.

 25

Figure 9-5 Scenes from Integration Effort

Figure 9-6 Collaborative Detection Target Run

 26

10. SITEX01, MARCH 2001

BAE Systems participated in SITEX01, held at MCAGCC, 29 Palms, during March 8-15, 2001.
Several teams demonstrated tracking applications and some signature data was collected on
Soviet vehicles.

BAE Systems led a team that included PSU-ARL, ISI-W and Sensoria Corp. Sensoria supplied
an imager compatible with WINS 1.0 nodes, an RF link to the SITEX01 command post, and a
display. PSU-ARL supplied node–node collaboration interfaces to ISI-W supplied Diffusion
Routing. BAE Systems supplied all signal processing, vehicle detection algorithms, Kalman
trackers, and data repositories.

Building on the SITEX00 August 2000 experiment, the team jointly demonstrated a wireless
imager triggered by a four node distributed tracker. Sensoria developed a wireless imager that
can be externally triggered and can transmit a picture via a spread spectrum radio link to a laptop
computer for display. BAE Systems developed robust CPA detection algorithms for seismic and
PIR sensors, and a distributed Kalman tracking algorithm that ran on the WINS 1.0 nodes. The
BAE Systems tracker transmits target state information among nodes using the ISI diffusion
network routing, and calculates a target position and velocity estimate that is then used to trigger
the imager. The experiment is indicated in Figure 10-1 and Figure 10-2.

Figure 10-1 SITEX01 Tracking Experiment

Four WINS 1.0 nodes were located along a 100 meter stretch of road. These nodes self
configured and used GPS to determine their location and to time synchronize. The first three
nodes were used to detect a single vehicle traveling along the road, establish a direction and a

East

Road West of Intersection

N1N2N4 N3

35 m. 35 m.
35 m.

12 m.

Node

Seismic

PIR

West

55o

90+θ

x’ (m)

y’ (m)
Questions about Imager Placement
1. Imager angle with respect to the road = θ degrees.
2. Imager distance from the road = y meters.
3. Imager center of vision to the road = y’ meters
4. Image coverage along the road = x’ meters.

Wireless Radio Network
Transmitting

Tracker State Information

Wireless Radio Network
Transmitting

Tracker State Information

Wireless Radio Network
Transmitting

Tracker State Information

Problem: Distributed Tracking and Velocity Estimation
• Track a vehicle as it drives east to west down the road past four nodes.
• Update the tracker estimates of vehicle speed and location at each node.
• Take a picture when the vehicle is in the image field of view.

 27

track, and estimate the velocity. The detection and tracking processes are distributed across the
network. Each node locally performs multi-sensor target detection and estimates the time of
target CPA. Prior target state information, including target speed, direction, and track, is
supplied from collaborating nodes, and will be updated on each node after a CPA event is
detected. The updated target state information is transmitted over the wireless network, and
shared as part of the low bit rate collaborative information vector. The fourth node monitored
the target state information, and using node location information, estimated the time to trigger
the imager. The detector uses a Neyman-Pearson optimum detection criterion and a robust CPA
event detector with a 3-second detection latency. A simple AND fusion logic for seismic and
PIR modalities is used to further reduce false alarms. Estimates of CPA target state information
were displayed locally on each node screen. The transmitted image was displayed on the laptop
screen.

Figure 10-2 Tracking Experiment Lay Down.

The collaborative tracking system was designed to minimize data exchange. At initiation, nodes
self configured and self located. They then broadcast their equipment configuration and location
to others in the area which had subscribed to configuration exchanges. These simple exchanges
allowed relative positions and internode distances to be calculated. During an event, the first
node to detect a vehicle began a track and broadcast to the other nodes the Track ID and Time of
CPA. This, with the locally stored distances, was sufficient for each node to update a local track

Four W
INs 1.0 Nodes & Im

ager

Radio Link to Command Post

Vehicle Travel

 28

copy. The node with the imager then used the track projection to trigger the imager when the
vehicle was in the field of view. An overview of the processing is in Figure 10-3 and a sample
image in Figure 10-4. A description of the Tracker API is in Figure 10-5.

Figure 10-3 Collaborative Track Processing

Figure 10-4 Sample Imager Capture

Sensor
Signal

 Processing
High Level

Processing, CPA
Estimation Sensor

Fusion
Sensor
Signal

 Processing
High Level

Processing, CPA
Estimation Sensor

Signal
 Processing

High Level
Processing, CPA

Estimation

PIR
Seismic
Acoustic

GPS
CPA

Sharing
Location
Sharing
Clock

Coordination

Kalman
Tracker

Imager
Trigger

Estimation

Image
Capture

Image
Display

Sensor
Signal

 Processing
High Level

Processing, CPA
Estimation Sensor

Fusion
Sensor
Signal

 Processing
High Level

Processing, CPA
Estimation Sensor

Signal
 Processing

High Level
Processing, CPA

Estimation

PIR
Seismic
Acoustic

GPS

Sensor
Signal

 Processing
High Level

Processing, CPA
Estimation Sensor

Fusion
Sensor
Signal

 Processing
High Level

Processing, CPA
Estimation Sensor

Signal
 Processing

High Level
Processing, CPA

Estimation

PIR
Seismic
Acoustic

GPS

Sensor
Signal

 Processing
High Level

Processing, CPA
Estimation Sensor

Fusion
Sensor
Signal

 Processing
High Level

Processing, CPA
Estimation

Sensor
Signal

 Processing
High Level

Processing, CPA
Estimation

PIR
Seismic
Acoustic

GPS

Kalman
Tracker

Imager
Trigger

Estimation
Kalman
Tracker

Imager
Trigger

Estimation
Kalman
Tracker

Imager
Trigger

Estimation

RF Link

Local Node Processing Collaborative Processing

Hardware: Sensoria
Signal & Collaborative Tracking: BAE SYSTEMS
Network Protocols: USC/ISI

Diffusion
Routing

 29

Track point layout:
{ common information that can be handled by a GUI }
id string, { id of track, arbitrary text }
time double, { time of report, UTC, seconds since 1jan70 (linux system clock) }

 { target state information }
zone byte, { UTM zone reference, -1 means unknown }
pnorth double, { estimated location, meters north of reference point }
peast double, { estimated location, meters east of reference point }
lconf float, { location confidence [0.0, 1.0]}

vnorth double, { estimated velocity in m/s, northerly component}
veast double, { estimated velocity in m/s, easterly component }

class string, { target classification}
cconf float, { classification confidence, [0.0,1.0] }

{ tracker-specific information follows}

{ GUI will not understand without augmentation }
typecode string, {specifies tracker-type}
trackspec blob {tracker -specific fields – for example see below}

Notes:

This is not a record structure (yet).

This layout is called Track point because typically a sequence of such records, all with the same ID, makes up a
target path (track). Thus, id is an id for a track, and each track point will carry that id for accumulating the track
itself. All trackers must provide some sort of id for a track. The assumption will be that multiple track points with
the same id are part of the same track.

Defaults and assumptions by GUI are:
 time is the time a vehicle is at the estimated location. Default 0 (won’t be displayed)
 Zone, pnorth, peast will be valid UTM values and will be correct (i.e., in the zone the GUI is working). Default
value of zone 0 means pnorth, peast are not reliable and there will be no display.
 Vnorth, veast are estimates of speed of the target identified by zone, pnorth, peast, time. Default 0,0.
 Class may be “Unknown”
 Lconf, cconf have default values of 1.0.

example of trackspec for typecode = “Kalman”

Figure 10-5 BAE Systems Tracker API

 30

SITEX01 was marginally successful. Vehicles were detected and tracked and an image
captured. But use of GPS locations and time stamps for automatic node configuration proved
problematical. Many otherwise successful runs were spoiled by improper time sync or by poor
geo-reference; one instance the GPS reported the node to be located on the equator, with errors
of 10km to 70km also noted. BAE Systems software did not account for the slow response of
the WindowsCE operating system of the WINS 1.0 nodes and occasionally two copies of the
program started and then competed for data samples.

The goal of low bandwidth collaborative tracking was proven. The short messages were
completely adequate for distributed Kalman tracking. Lessons about slow data rates (the short
messages were necessary or the radio couldn’t send the message before the target passed the
‘next’ node), poor time synchronization, poor GPS interfaces, and a slow operating system all
contributed to improved designs in the WINS 2.0 nodes.

 31

11. SITEX02, NOVEMBER 2001

SITEX02 was the second SensIT field experiment involving all teams and was conducted from
late October to mid November 2001. Different teams participated at different times to use the
field of approximately 70 WINS 2.0 nodes supplied by Sensoria Corp. The nodes were located
in the same general area as the nodes for SITEX00, at “the entrance to the Prospect” on the
eastern ranges of MCAGCC, Twentynine Palms CA. As in SITEX00, all nodes were connected
with 10BaseT Ethernet lines and powered from large lead acid batteries.

SITEX02 was a large exercise and several experiment teams participated. BAE Systems
supported all teams with Signal Processing algorithms and Data Repositories for on-node data
persistence. Two teams from Northwestern University separately examined collaborative
detection and tracking. Rutgers and Berkley examined Mote/WINS integration. Auburn and
University of Tennessee examined mobile services and target detection and classification. (This
team continued the experiments in August of 2002 at the BAE Systems Austin Testbed.)
Fantastic Data examined data caching for in-field persistence. ISI-W examined data latency and
transport efficiency of their Diffusion Data Routing algorithm. MIT-LL examined multi-node
localization with TDOA techniques. Xerox PARC examined multi-node tracking and use of
acoustic arrays for localization. A large team headed by PSU-ARL, including University of
Maryland and Virginia Tech, examined a distributed vehicle tracker. BBN joined this team at
the end of SITEX02 with a substitute tracker. A separate BAE Systems (Nashua) team operated
MIUGS equipment during the SITEX02 runs. BAE Systems (Austin) also operated high
bandwidth acoustic collection systems and examined other sensors, including magnetometers
and microradar.

BAE Systems developed new versions of the signal processing algorithms and new versions of
the data repositories. Work started with the WINS 2.0 specification published after the April PI
meeting. New code was tested and documented between the delivery of the first WINS 2.0
nodes in early August and the systems integration conference at the first of September.
Algorithm documentation, API documentation and early library iterations were supplied to other
teams during July and August to support their development needs. Telephone consulting and e-
mail exchanges aided the users. BAE Systems supported the September integration meeting
conducted at BBN by delivering the proven signal processing algorithms and data repositories as
tested libraries re-implemented for the LINUX operating system of the WINS 2.0 nodes. Brian
Corser attended the integration meeting to provide training and software support to the users.
During field integration and test periods, BAE Systems aided other teams with unique interface
code and with design and debug support.

BAE Systems interfaced to the WINS 2.0 signal capture and GPS sub-processor. Acoustic,
seismic, and PIR motion sensors were fitted to all nodes for the group experiments. BAE
Systems published properly down sampled time series in the Time Series Repository for shared
access by all teams. Power spectra and filtered bands of interest were published in the Signal
Processing Repository. CPA detections, with times and confidence, for all sensor modes were
published in the High Level Event Repository. Node location and time synchronization
information, generated with MIT-LL support, were published in the Meta Knowledge

 32

Repository. BAE Systems generated detection events became the default system health indicator
– intentional traffic and targets-of-opportunity generated events and failure to detect was a
reliable sign of node failure.

During the field exercises at MCAGCC, BAE Systems focused most of their effort on signature
collection with the wideband data collection system. Having delivered required algorithms at the
September integration meeting, only occasional support to teams using the algorithms was
required. Data collection was conducted from a tent located just north of the main road
intersection. A second BAE Systems tent was installed to support field integration teams from
Auburn, Xerox PARC, and MIT-LL.

BAE Systems installed a buried magnetometer under the middle of the North-South road and a
second magnetometer at 15m from road center. A 3-axis reference geophone was installed in the
group of instruments 15m from road center. Several accelerometers attached to surrogate sensor
node bodies were installed to investigate accelerometer versus geophone seismic sensing. The
microradar was installed at the 15m roadside cluster. And, an omni-directional microphone was
installed at this same site. See Figure 11-1 for an overview of the sensing cluster that was
adjacent to one of the BBN sited WINS 2.0 nodes.

Figure 11-1 BAE Systems Road Side Instruments for SITEX02

Additionally, some acoustic arrays were installed. The line array, panel array, and tetrahedron
arrays from SITEX00 were installed approximately 40m from the North-South Road. A
mesoscale array of seven omnidirectional microphones was installed south of the BAE Systems
operational tent and the road intersection. The separation of these microphones was to

WINS 2.0 Node

Acoustic

3-Axis
Geophone

Micro RadarMagnetometer

Mine Mass
Accelerometer

Air Drop
Accelerometer

 33

approximate the placement of mines deployed by a Volcano launcher; approximately 15m
displacement. Their pattern was to facilitate the study of possible multi-node beam forming or
coherent processing on this intermediate scale. These installations are in Figure 11-2. Data from
these sensors were collected using the IOtech and Laptop Computer data acquisition from
SITEX00. Files were shared with other SensIT PIs as requested.

Figure 11-2 BAE Systems Acoustic Arrays at SITEX02

 34

12. BAE TESTBED IN-BUILDING TRACKING, July 2002

While most SensIT effort was focused on vehicle problems, BAE Systems investigated sensing
in urban and complex terrain. Algorithms for human presence detection were implemented on
WINS 2.0 nodes positioned in and around buildings on the Austin campus. The Kalman Tracker
used in SITEX01 at MCAGCC, Twentynine Palms, was modified for tracking humans as they
moved about the building. The SensIT team from ISI-E joined in a series of experiments to
monitor the Austin building site remotely from a center just outside the DARPA offices.

A building defense scenario was investigated. In this scenario, a small force is inside a building
to keep it secure. A vehicle with an assault team approaches the building, troops enter the
ground floor through a door; some go to the second floor to take a corner window position and
provide cover fire for any external defense response team. Sensors are placed to monitor this
and alert the Blue force of conditions. A node in the approach area detects and identifies the
troop vehicle and provides the initial alert. A motion sensor at the door counts troops entering
the building. A motion sensor counts troops as they arrive at the second floor, giving the Blue
team a measure of strength on each floor. The time to move from the door to the second floor
indicates intent; a long delay indicates a thorough clearing of the first floor. On the second floor,
sensors monitor movement and from track evidence indicates Red troop locality and control of
hallways. The rapid movement to the corner indicates that this splinter force intends to focus
outside and let the following force clear the remainder of the building.

BAE Systems tracker allowed person-track association under the erratic movement of persons on
a mission. Detections and track activity was relayed to an ISI-E server for display at DARPA.
WebCams, also linked to the server, provided ground truth about movement and hallway control.
This experiment was replicated at the final PI meeting at BBN, November of 2002, with the
addition of the Cornell University team, who supplied node and network query capability and
mobile code. A sensor laydown and site pictorial are shown in Figure 12-1 and Figure 12-2.

 35

Entrance on Ground FloorVehicle Drive Parking

Access to 2nd Floor

SensIT Node

Notional
Laydown

Modified as
Needed

Figure 12-1 BAE Systems In-Building Experiment Lay Down

2nd Floor

Experiment Conducted in
Typical Domestic

Commercial & Light
Industrial Building

Figure 12-2 BAE Systems Urban Test Site

 36

13. BAE TESTBED OUTDOOR TRACKING, AUGUST 2002

BAE Systems installed a SensIT Testbed of 22 WINS 2.0 sensor nodes during the summer of
2002. A variety of conditions were available on the Austin Campus as seen in Figure 13-1 and
Figure 13-2.

The SensIT WINS 2.0 nodes were mounted in a weather proof case with a 120AH Marine
Battery. Each node was configured with both 802.11 wireless and 10BaseT wired network
connections. The internet links were to support node configuration, software management and
run time monitoring, raw time series data collection, and links to the Campus Internet for links to
off-site experimenters. A node is shown in Figure 13-3.

Open Roadway
¥ Linear Approach

¥ Intersection
¥ Open Environment

¥ Quiet Seismic

Building Alcove
¥ Flexible Approach

¥ Low Buildings
¥ People and Vehicles

Long Roadway
¥ Extended Tracking Time
¥ Intersection
¥ Tree Line / Open Margin

Test Field
¥ Unconstrained Approach
¥ Flexible Lay-down
¥ Grassland

Tree grove
¥ Flexible Placement
¥ Flexible Approach
¥ Pavement and Grass Surface

Hallways
¥ Interior Environment

¥ Limited Exposure
¥ People

Figure 13-1 BAE Systems Austin Test Bed Experiment Locations

 37

Figure 13-2 BAE Systems Experiment Environments

Figure 13-3 BAE Systems Test Bed Node Configuration

 38

A multi team experiment was conducted on the test bed during August 17-22, 2002. BAE
Systems provided signal processing and repository services on the WINS 2.0 nodes. ISI-W
Diffusion Routing supported node-node collaboration and data exchange. Auburn University
provided versions of target detection and Dynamic Software Services, which support sensor field
re-configuration in the event of failure. University of Tennessee conducted experiments in target
detection, tracking, and identification.

Two sites were used: a roadside intersection with structured sensor placement, working against a
variety of planned and targets of opportunity; and a ‘randomly’ placed configuration in a open
field (a parking lot).

Software and experiment site integration began over the weekend of August 17. Experiments
ran Monday – Thursday. Most time was spent at the road intersection, as it was convenient and
supplied a steady stream of targets. The parking lot was used on Wednesday, with SUV and
heavy pick-up truck targets. During these runs, most all of the SensIT Challenge Configurations
were accomplished. Photographs of experiment activity are shown in Figures 13-4 and Figure
13-5.

Figure 13-4 BAE Systems Test Bed Experiment Roadside Activity

 39

Figure 13-5 BAE Systems Test Bed Experiment Parking Lot Activity

 40

14. CONCLUSION

SensIT promoted a series of advancements in the understanding and use of fields of autonomous,
collaborative sensor nodes. Two node design iterations were completed and follow-on designs
specific to team members were sponsored (BAE Systems developed a very small low power
node to detect human presence). The utility and efficiency of Diffusion Routing was
demonstrated and several version iterations delivered during the project. Data persistence was
examined; both on-node storage with share-on-demand, and cached storage with predictive
sharing, being studied. Several experiments in collaborative sensing, collaborative localization,
and collaborative identification were performed by a long list of teams. A distributed
collaborative tracker was demonstrated. Self configuring nodes, supported by a self forming
radio network, were demonstrated. Configurations with structured laydown, and dense and
randomly placed nodes were investigated. BAE Systems supported all these with publicly
shared signal processing and repository libraries of the highest quality.

The body of technology accomplishments described above establishes a technology base for the
transition of sensor networks to use in modern battlefield settings like Afghanistan and Iraq.
BAE Systems has continued to develop and mature the SensIT technology base. We have
focused on developing robust sensor nodes that can be deployed to form an autonomous self
forming sensor network. Figure 14.1 shows the sensor node being supplied to the Pathfinder
ACTD program sponsored by the
Special Operations Command
(SOCOM). Active discussions are
also underway with the Marine Corp
and Air Force to supply sensor
networks for border and remote
airfield monitoring. Situational
awareness in urban environments is
also a priority that is being pursued
by BAE Systems. Low power
autonomous sensor networks are key
to success in the tactical urban
environment. In summary, SensIT
demonstrated that large numbers of
sensors can be deployed in a self
forming ad hoc wireless sensor
network to provide effective
battlefield sensing. It is an ongoing
effort to transition this technology for
service use.

Figure 14.1 BAE Systems Wireless Sensor Node

Battery Pack
(2x D cells)

3x Microphone

Seismic Sensor EMI Shielding

2x IR Sensor

Radio
Antenna

4x Circuit Card

Glass Reinforced
Plastic Case

O-ring Seal

7x Solar Cell

Battery Pack
(2x D cells)

3x Microphone

Seismic Sensor EMI Shielding

2x IR Sensor

Radio
Antenna

4x Circuit Card

Glass Reinforced
Plastic Case

O-ring Seal

7x Solar Cell

 41

APPENDIX A: BAE Repositories API

Overview
The purpose of this document is to provide a description of the repository architecture along with
an explanation of the API. Example code will also be presented that demonstrates how to add
data to a repository, retrieve data from a repository and receive notifications when new data has
been added a repository. Some of this is out of date but most of the function calls and
architecture are still the same.

Repository Architecture
The repositories were designed to provide an efficient means of storing and retrieving real time
data that is shared between several independent processes. After a fair amount of research, it
was determined that memory mapped files with advisory record locking provided the most
efficient form of Inter Process Communication (IPC). This is in light of the fact that at the
current time IPC V is not supported on the SH4 linux boxes. The binary layout of a repository,
once it has been mapped into a process memory space, is shown below.

The repository header is a structure that is described below and is defined in RepUtil.h.

Field Name Type Description
Name char[128] Name of the repository
Numelements Int Number of elements the circular buffer holds
Elesize Int Record size in bytes
Poshead Int Zero based position index of the newest record in the

buffer
Postail Int Zero based position index of the oldest record in the buffer
Flagfull Int Flag that indicates if the circular buffer has been filled yet

and wrapped back around

Repository
Header

CircularBuffer
with records

Position 0

Position
Numelements-1

DataFill Direction

 42

One file will be created and mapped for each repository. The naming convention for these files
is Rep#.rep.

In order to interface with the repositories, a small static link library has been written by BAE
SYTEMS. This library provides the following functionality.

1. Allows a user to connect to a repository, or automatically create a newly initialized one if

there are currently no users.
2. Add data to a repository
3. Get the repository header
4. Retrieve data from a repository
5. Get the a copy of the newest record
6. Get the position of the newest record

These functions are described in the appendix.

Subscription Manager

The subscription manager allows users to subscribe to different repositories so that they can be
notified when new data is available. The first time a user enters a subscription, the following
events take place.

1. A fifo is created that is used to receive event notifications.
2. A thread is created to service the fifo
3. The subscription is written to Subscriptions.rep

If the subscription is changed at a future point in time, only the file entry is updated. Currently,
the number of subscriptions is limited to 100.

When data is added to a repository that a program has subscribed to, an event structure will be
created and then placed in the program’s fifo. The table below describes an event structure,
which is also declared in RepUtil.h.

Field Name Type Description
Timestamp Timeval Time that the event was placed in the fifo
Repid REP_ID (enumeration) Id of the repository
Pos Int Position within the circular buffer the record

was placed

Event structures are then passed to the user via the callback function. The timestamp value is set
when the event is written into the fifo with the gettimeofday function, and therefore may not
correspond to the timestamp on the record. Also, another thing to note is that if a program’s
processing cannot keep up with the rate at which events are being generated, then its event queue
will eventually fill and events will be lost. Currently, the event queue can hold 100 event
structures.

 43

In order to avoid unexpected program termination the repositories setup a signal handler to
handle the SIGPIPE signal. If your program also uses SIGPIPE then you should contact BAE so
that special provisions can be made.

Repository API
This section will describe the functions available for interfacing with the repositories and are
defined in RepUtil.h.

void InitRepository()

Description: This function should be the first repository function called. It is used to initialize
various data structures.

Inputs: None.

Outputs: None.

REP_RESULT CreateRepository()

Description:
This function is used to create the repositories files and map them into the user’s memory space.
The repository is created in the current directory. If this call detects that there is a repository
already in use, it will just connect to it. The file RepLockFile.rep is used by this function.
Currently, this function creates eight repositories; four time series and four signal processing.
The time series repositories all hold the TS_RECORD structure and the signal processing all
hold an SP_RECORD structure; both are defined in RepUtil.h.

Inputs: None.

Output: REP_OK on success.

 44

REP_RESULT RepAddData(REP_ID id,void *pdata, int size)

Description:
This function is used to add new data to the repository. Once the repository in full the oldest
record will be overwritten when this function is called.

Inputs:
id - One of the repositories enumerated in REP_ID
pdata - A pointer to the record that is to be copied into the repository.
size - The size of the memory pointed to by pdata. REP_INVALID_RECORD_SIZE
 is returned if size does not match the size(elesize) of the record.

Outputs:
REP_OK on success.

REP_RESULT RepGetHeader(REP_ID id, REP_HEADER *phdr)

Description:
This function is used to get a copy of the repository header. Poshead and Postail will be equal to
–1 if no data has been added to the repository.

Inputs:
id - One of the repositories enumerated in REP_ID
phdr - Pointer to a REP_HEADER that will receive the data.

Outputs:
REP_OK on success.

REP_RESULT RepCopyDataAbs(REP_ID id, int index, void *pbuf, int size)

Description:
This function is used to provide random access to repository data.

Inputs:
id - One of the repositories enumerated in REP_ID
index - Position in the circular buffer to retrieve data from.
pbuf - Point to the memory that will hold the record.
size - Size of the memory in bytes. This should be the same size as the record.

Outputs:
REP_OK on success.
REP_INDEX_OUT_OF_RANGE – If the index is less than 0 or greater than numelements-1
REP_NO_VALID_DATA – This value is returned if no data has been added at this position.

 45

REP_RESULT GetNewestDataPos(REP_ID id,int *index)

Description:
This function returns the position of the newest data record, which would be useful, if an
application were going to use polling to determine when new data was added to the repository.
When new data is added the index will change.

Inputs:
id - One of the repositories enumerated in REP_ID
index - Position in the circular buffer to retrieve data from.

Outputs:
REP_OK on success.

REP_RESULT GetNewestRecord(REP_ID id, void *pdata, int size)

Description:
This function is used to get a copy of the most recent record in the repository.

Inputs:
id - One of the repositories enumerated in REP_ID
pdata - Pointer to the memory that record will be copied to.
size - Size of the memory pointed to by pdata.

Outputs:
REP_OK on success.

REP_RESULT SetSubscriptionManager(CSubscriptionManager *psm)

Description:
This function is used to set the subscription manager that the repository is going to use. If the
program does not want to notify other users when new data is available or receive events then it
should not call this function. Care should be taken to initialize the subscription manager before
calling this function.

Inputs:
psm - A pointer to an initialized subscription manager.

Outupts:
REP_OK on success.

 46

CSubscription Manager API
This section will describe the CSubscription manger class Api. The class is declared in
SubscriptionManager.h and if a program uses the subscription manager, it should include this
header file after RepUtil.h.

REP_RESULT Init(char *name,void *(func)(REP_EVENT))

Description:
This function is used to initialize the subscription manager. It should be called after the
InitRepository() and CreateRepository() function calls and before the SetSubscriptionManager
call.

Inputs:
name - A character pointer to unique string that will be used to identify the user. Only
 the first 24 characters will be used.
func - A pointer to a user function that the subscription manager will call when new
 data is available. If the user does not want to receive notifications NULL should
 be passed in. This would allow a program to still broadcast notification to other
 programs.

Outputs:
REP_OK on success.

REP_RESULT SetSubscription(CSublist *list)

Description:
This function is used to set the repositories that the user wants to subscribe to.

Inputs:
list - A pointer to a CSublist object that contains the subscription list.

Outputs:
REP_OK on success.

REP_RESULT DeleteSubscription()

Description:
This function deletes the current subscription from the repository.

Inputs:
None.

Outputs:
REP_OK on success.

 47

Example Code
This section will present two short examples that should help to demonstrate the API and the
calling order. The first example is a simple server that just puts data into time series repository
one. The second example is a client program that sets up a subscription for time series one. To
build the example programs, copy the source code into a directory and type the following
commands:

make –f replib.mk Replib
make –f replib.mk Examples

The first command will build the static link library RepLib.a and the second command will build
ExampleServer and ExampleClient. To run the example programs, type ./ExampleServer to start
the server. Then in a separate console window type ./ExampleClient xxx. The ExampleClient
program takes a command line argument, which is the name of the subscription. More than one
ExampleClient can be run at a time, but they will need to be started with different subscription
names. The code below gives an example.

start the server
>./ExampleServer
separate console window
>./ExampleClient client1
separate console window
>./ExampleClient client2

 48

ExampleServer
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include "RepUtil.h"
#include "SubscriptionManager.h" // include afer RepUtil.h

int main()
{
 CSubscriptionManager sm;
 REP_RESULT res;
 TS_RECORD tsrec;
 int i;

 // initialize and create the repositories
 // these should always be the first two calls
 InitRepository();
 res = CreateRepository();
 if(res != REP_OK)
 {
 printf("Error creating repository\n");
 exit(1);
 }

 // We can now initialize the subscription manager
 // Null means that we are not interested in
 // receiving callbacks
 res = sm.Init("ExampleServer",NULL);
 if(res != REP_OK)
 {
 printf("Init error\n");
 exit(1);
 }

 // set the subscription manager so that we can broadcast
 // events to other users
 SetSubscriptionManager(&sm);

 i = 0;
 for(;;)
 {
 tsrec.data[0] = i;
 tsrec.data[255] = i;

 printf("%d\n",i);

 i++;

 // add a new record to the time series repository
 // this function will also notify other interested users
 // since we attached a subscription manager
 res = RepAddData(TS_CHAN_1,&tsrec,sizeof(tsrec));
 if(res != REP_OK)
 {
 printf("Error adding data\n");
 exit(1);
 }
 usleep(0);
 }
}

 49

ExampleClient

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include "RepUtil.h"
#include "SubscriptionManager.h" // include afer RepUtil.h

void RepCallback(REP_EVENT ev);

int main(int argc,char *argv[])
{
 CSubscriptionManager sm;
 REP_RESULT res;
 TS_RECORD tsrec;
 CSubList sl;
 int i;
 char repname[25] = "Test_Rep"; // default user name

 if(argc > 1)
 {
 strncpy(repname,argv[1],25);
 repname[24] = '\0';
 }

 // initialize and create the repositories
 // these should always be the first to calls
 InitRepository();
 res = CreateRepository();
 if(res != REP_OK)
 {
 printf("Error creating repository\n");
 exit(1);
 }

 // We can now initialize the subscription manager
 // repname is passed in via the command line and
 // RepCallback is a pointer our callback function
 res = sm.Init(repname,RepCallback);
 if(res != REP_OK)
 {
 printf("Init error\n");
 exit(1);
 }

 // set the subscription manager so that we can broadcast
 // events to other users
 SetSubscriptionManager(&sm);

 // Subscribe to time series channel 1
 sl.Subscribe(TS_CHAN_1);

 // Set the subscription so that we can start receiving callbacks
 res = sm.SetSubscription(&sl);

 50

 if(res != REP_OK)
 {
 printf("Set subscription error\n");
 exit(1);
 }

 i = 0;
 for(;;)
 {
 sleep(10);
 }
}

void RepCallback(REP_EVENT ev)
{
 static TS_RECORD tsrec;

 RepCopyDataAbs(ev.repid,ev.pos,&tsrec,sizeof(tsrec));
 printf("rep id %d pos %d data[0] %d data[255] %d\n",ev.repid,
 ev.pos,
 tsrec.data[0],
 tsrec.data[255]);
}

 51

APPENDIX B: Example Repository Polling Code

Overview
The purpose of the document is to provide documentation for the example code that is used to
poll the repositories for data. It will also explain how to run and configure the signal processing
code that puts data into the repositories.

Repository Code
Several changes and additions have been made to the repository code since its very first release.
One of the most notable changes is that structures have been defined to support one of three
different types of processing (i.e. Acoustic, Seismic, and PIR). A high level repository has also
been added and a structure for it has also been defined. These structures can be found in the
ProcStruct.h header file. The header file is also being included at the end of this document. A
file call config.rep is used to configure the repositories. It is read in when the call to
CreateRepositories() is made. If this file is not found in the current directory, a default
configuration is used and a config.rep file is generated that reflects the current settings.

Several new functions have also been added. Among these are functions that allow a type safe
way to add and retrieve data from the repositories. These functions are in RepTypeSafe.h and
RepTypeSafe.cpp. All of these functions follow the same basic form. An example of one of
these function is given below:

void RepAddAcousticTs(REP_ID id,AcousticSection *prec);

This function allows a user to add data to the repository. If the repository identified by id has not
been setup to hold an AcousticSection, then an error message will be printed and the program
will exit. These functions basically wrap the RepAddData and the RepCopyDataAbs, except that
they check to see if the repository has been setup correctly. Another new function that has been
added is:

REP_RESULT RepLookupRecord(REP_ID id,timeval rectime,int *index)

The purpose of the function is to retrieve a record’s position based on a time stamp. If rectime
does not fall in the time span of the data being held in the repository, then either
REP_TIME_OUT_OF_RANGE_LESS or REP_TIME_OUT_OF_RANGE_GREATER will be
returned depending of whether rectime is less the oldest record time or greater then the newest
record time in the repository.

REP_ID is defined by the following enumeration:

{
 TS_CHAN_1, // time series repository for a/d channel one
 SP_CHAN_1, // low level signal processing repository for a/d channel one

 52

TS_CHAN_2, // time series repository for a/d channel two
 SP_CHAN_2, // low level signal processing repository for a/d channel two

 TS_CHAN_3, // time series repository for a/d channel three
 SP_CHAN_3, // low level signal processing repository for a/d channel three

 TS_CHAN_4, // time series repository for a/d channel four
 SP_CHAN_4, // low level signal processing repository for a/d channel four

 HIGH_LEVEL_REP, // holds detection results

 NUMBER_OF_REPS,
};

Another significant change to the repositories is that a program that uses them can now be run
from an nfs mount drive. The reason this was not possible in the first release is that the
repository files where written to the current directory and linux does not support file locking on
network files. To overcome this problem we are now setting the repositories up in /tmp.

Signal Processing

The signal processing is contained in a program call sh4baeproc and should be in the /bin
directory of the zipped file. This program does the low-level processing, detection, classification
and writes the results to the repository. It can be configured to perform one of four types of
processing Acoustic, Seismic, PIR and No Processing. The type of processing performed and
gain for each channel is determined by the config.rep file. This program also needs the
following files: HPFfilcoefs.dat, Hanning1024.dat, Hanning256.dat and dsfiltcefs64.dat.

config.rep

config.rep is used to configure both the repositories and sh4baeproc. An example config.rep file
is shown below.

BAE Repository Configuration File

lines that start with # are read in as comments

currently the repository can be configured to support acoustic,
seismic, and pir processing also the number of records held in
the repository can be set

To setup a repository for processing on a particular channel the
follow convention is used
Chan Processing NumberRecords Gain

 53

where Chan is a string - Chan_1,Chan_2,Chan3,Chan_4

Processing is a number
0 - No Processing
1 - Acoustic
2 - Seismic
3 - PIR

NumberRecords is a number that tell how many records the repository should hold

Gain is the sensoria number
0 - 2
1 - 11
2 - 101
3 - 1001

Chan_1 1 400 0
Chan_2 1 400 1
Chan_3 1 400 1
Chan_4 1 400 1
High_Level 0 100 1

The format of this file is pretty simple, # is used to comment lines out and Chan_1 – Chan_4 are
used to configure the input channels. In the example above, channel one is configured for
acoustic signal processing, 400 records in the repository and a gain of 2. Channels two through
four are setup for acoustic processing, 400 records in the repository and gains of 11.

Polling Example
The polling example code consists of several files, which are located in the jim_reich directory.
A description of each file is given below:

Main.cpp – example code for using the functions in RepPoll.cpp

RepPoll.cpp – contains calls that poll the repository for new time series data and signal
processing data. These function calls will retrieve consecutive records from the repositories so
that all the records have the same time stamp.

RepPoll.h – header file for RepPoll.cpp

MakeFile – make file for example code. It creates a file called jimexample and puts it in the bin
directory.

To run the example code copy the sh4baeproc code to one of the sh4 nodes along with its
required files, copy jimexample to the node, and set the config.rep file up so that it does acoustic
processing on all four channels. Sh4baeproc can now be started from the command line. When
it is started it will read the config.rep file and build the repositories in /tmp, it will also start
reading data from the a/d channels and putting data into the repositories. The jimexample
program can now be started. When it is started, it will detect that the repositories are already
being used and that all it needs to be is just connect. It will then call the InitRepPolling function

 54

that will setup static variables used during the polling process. Two other functions are called in
this program. The first is GetAcousticTimeSeries and the other is GetAcousticSeriesfft. These
functions return true when new data is available and return false when no new data is available.
Each time new data is available the time stamp of the received record is written to a file. The
GetAcousticSeriesfft function call will return data at one-fourth the rate of the
GetAcousticTimeSeries function. This is because four time series records are used to produce
one signal processing record. The diagram below is used to illustrate the interaction described
above.

To compile a program that uses the repositories include one or all of the following header files:
RepUtil.h, RepTypeSafe.h, RepPoll.h and link in Sh4RepLib.a. If RepPoll.h is included, also
compile in RepPoll.cpp. To compile the repositories for the pc, comment out all of the sh4
compiler stuff at the top of replib.mk and use make –f replib.mk RepLib. Sh4RepLib.a can be
found in sh4lib and replib.mk can be found in /mmapreps.

DataSender
Datasender is a program that we use to log and view data. This program uses subscriptions to
get data from the repositories and it is configured with the datasender.cfg file. Typically what
we do is to mount a network drive on one of the nodes and then run the sh4baeproc program to
put data into the repositories and then run the datasender program and have it open a file on the
mounted drive and then log data to it. If people want more documentation on this program they
can e-mail me at brian.corser@tracor.com or call me at 512-929-4082.

Splitter
Splitter contains code for a program called split. This program will split the files generated by
the datasender program into individual files. To run this program first make a directory called
splitdata and then type split filename. The split data will be put in the folder splitdata. Again if
more documentation is needed let me know.

sh4baeproc Repositories

config.rep

jimexample

Timestamp
files

 55

ProcStruct.h

//
// ProcStruct.h
//
//
#ifndef __ProcStruct_h__
#define __ProcStruct_h__

#ifndef SAMPLES_PER_SECTION
#define SAMPLES_PER_SECTION 256
#endif

#define SAMPLES_PER_SECTION_ACOUSTIC SAMPLES_PER_SECTION
#define SAMPLES_PER_SECTION_ACOUSTIC_FFT 2*SAMPLES_PER_SECTION

#define SAMPLES_PER_SECTION_SEISMIC SAMPLES_PER_SECTION
#define SAMPLES_PER_SECTION_SEISMIC_FFT SAMPLES_PER_SECTION/2

#define SAMPLES_PER_SECTION_PIR 5

//
//
// Enumeration for the different types of structures that can be
// stored in a repository
//
//
typedef enum
{
 REP_ACOUSTIC_TS,
 REP_ACOUSTIC_FFT,
 REP_SEISMIC_TS,
 REP_SEISMIC_FFT,
 REP_PIR_TS,
 REP_HIGH_LEVEL,
} REP_STRUCT_ID;

///
//
// Structure for holding record header information
// all the records that BAE stores in the repositories will
// contain this header as the first element their structure
//
///
typedef struct
{
 timeval ts; // timestamp for this set of points
 int gain; // amplifier gain
 float rate; // sample rate
 REP_STRUCT_ID structid; // identifies type of struct in the repository
 int numpts; // number of points in this record
} REP_RECORD_HEADER;

///
//

 56

// Structure for holding Acoustic time series data
//
///
typedef struct
{
 REP_RECORD_HEADER hdr;

 float data[SAMPLES_PER_SECTION_ACOUSTIC];
} AcousticSection;

///
//
// Structure for holding Acoustic psd data
//
///
typedef struct
{
 REP_RECORD_HEADER hdr;

 float data[SAMPLES_PER_SECTION_ACOUSTIC_FFT];
} AcousticSectionfft;

///
//
// Structure for holding Seismic time series data
//
///
typedef struct
{
 REP_RECORD_HEADER hdr;

 float data[SAMPLES_PER_SECTION_SEISMIC];
} SeismicSection;

///
//
// Structure for holding Seismic psd data
//
///
typedef struct
{
 REP_RECORD_HEADER hdr;

 float data[SAMPLES_PER_SECTION_SEISMIC_FFT];
} SeismicSectionfft;

///
//
// Structure for holding PIR time series data
//
///
typedef struct
{
 REP_RECORD_HEADER hdr;

 float data[SAMPLES_PER_SECTION_PIR];

 57

} PirSection;

//
//
// Enumeration for high level repository structure
//
//
typedef enum
{
 REP_ACOUSTIC_SENSOR,
 REP_PIR_SENSOR,
 REP_SEISMIC_SENSOR,
} SENSORID;

typedef enum
{
 BAE_AUSTIN,
 PSU,
 WISCONSIN,
} SOURCEID;

///
//
// Structure for holding event detection information
// high level repository
//
///
typedef struct
{
 REP_RECORD_HEADER hdr;

 long nodeid; // unique node identifier
 timeval timestamp; // timestamp for the detection
 SENSORID sensorid; // identifies the sensor that made the detection
 int targetcode; // code book value for the target
 SOURCEID sourceid; // identifies who generated the detection
 int direction; // direction the target is traveling
 float speed; // target speed at cpa
 float range; // target range at cpa
 float confidence; // confidence value of the detection
} HighLevel;

#endif

 58

RepTypeSafe.h
This header file has type safe called for adding and retrieving data from the repositories.

//
// RepTypeSafe.h
//
//

#ifndef _RepTypeSafe_h_
#define _RepTypeSafe_h_

#include "RepUtil.h"

void RepAddAcousticTs(REP_ID id,AcousticSection *prec);
void RepAddAcousticfft(REP_ID id,AcousticSectionfft *prec);

REP_RESULT RepGetAcousticTs(REP_ID id,int index,AcousticSection *prec);
REP_RESULT RepGetAcousticfft(REP_ID id,int index,AcousticSectionfft *prec);

void RepAddSeismicTs(REP_ID id,SeismicSection *prec);
void RepAddSeismicfft(REP_ID id,SeismicSectionfft *prec);

REP_RESULT RepGetSeismicTs(REP_ID id,int index,SeismicSection *prec);
REP_RESULT RepGetSeismicfft(REP_ID id,int index,SeismicSectionfft *prec);

void RepAddPirSection(REP_ID id,PirSection *prec);
REP_RESULT RepGetPirSection(REP_ID id,int index,PirSection *prec);

void RepAddHighLevelEvent(REP_ID id,HighLevel *prec);
REP_RESULT RepGetHighLevelEvent(REP_ID id,int index,HighLevel *prec);

#endif

 59

APPENDIX C: BAE Low Level Signal Processing

Overview

The purpose of this document is to provide documentation for the low-level signal processing
code along with the changes that have been made to the repository code. A detailed presentation
of the signal processing chain can be found in BAEProcSpecVersion1.3.ppt. This document will
mainly focus on setup, compiling and running the supplied code.

Signal Processing Code

The aim of the low-level signal processing code is to provide appropriate processing for the
current sensor suite. Specifically, we are providing acoustic, PIR and seismic processing. The
default configuration is to have acoustic processing on channel 1, PIR processing on channel 2
and seismic processing on channel 3. It is not currently possible to change this default setting,
but this capability will probably be added in the future. In order to make the result of the low
level processing available to other groups, they are being written out to the repository.
Documentation has already been provided that covers the basic workings of the repositories and
so it will not be covered again here. The next section will describe the changes that have been
made to the repositories and describe the structures that we are storing in them.

The signal processing code currently sets the sample rate to 1 and the gain for each channel to 1.
This will be changed in the future to use BBN’s node initialization code. Also, in order to run,
the following files will need to be present:
 HPFfiltcoefs.dat
 Hanning1024.dat
 Hanning256.dat
 dsfiltcefs64.dat.

Repositories

Several changes have been made to the existing repository code and are listed below.

1. Fixed a bug that sometimes prevented a client from properly connecting to the
repository.

2. Added a configuration file so that the type and number of records held in a repository
can be configured.

3. Defined specific structures for each type of signal processing.
4. Added type safe interface to add and retrieve data.
5. All repositories will now be put in the /tmp directory instead of the current directory.

config.rep is used to setup and configure the repositories and will be located in the /tmp
directory. The idea behind the config file is that each channel has a time series and a signal
processing repository which can be configured to hold the results of either acoustic, PIR or
seismic signal processing. If config.rep is not present when a client connects a default

 60

configuration for the repository will be created with acoustic processing on channel 1, seismic
processing on channel 2 and PIR processing on channel 3. A default config.rep file will also be
created.

The structures for each type of processing are in ProcStruct.h.

 61

APPENDIX D: CONFERENCE PAPERS

Collaborative signal processing for a cluster of inexpensive
distributed sensor nodes

Steven D. Beck, Joseph Reynolds

BAE SYSTEMS Integrated Defense Solutions Inc.

6500 Tracor Lane MS 1-8
Austin, TX 78725

512-926-2800
steve.beck@baesystems.com

joe.reynolds@baesystems.com

The tactical and urban warfare community has a significant need for up-close sensing capability along with
increased sensing coverage. The recent availability of small, inexpensive, light weight, and low power sensing
nodes is providing the means to cover an area with a distributed network of remote intelligent sensors. Utilizing
local node information combined with information from neighboring nodes is a significant challenge. An even
bigger challenge is making use of meta-knowledge and tasking a cluster of nodes to cooperate on a task specified at
a very high level. This paper provides a survey of collaborative signal processing considerations and techniques that
can be used with a distributed network of smart sensor nodes to improve target detection, identification, localization,
and tracking. Factors for system design are discussed, along with an example application.

Keywords: Collaborative Signal Processing, Distributed Sensors, Optimal Detection, Fusion, Meta-Knowledge

1. INTRODUCTION
This paper discusses aspects of sensing for tactical military objectives, in contrast with military strategic sensing,
environmental monitoring, or other examples. System level objectives include detection and tracking of motorized
or dismounted forces, threat indicators and warnings, and timely updates to the tactical picture. The objectives
require measuring temporal relationships among individual detection events on a short time scale, call for
decomposition and recombination of event sequences, require establishment of geographical relationships, and
systems must work in the presence of countermeasures. Obviously, these objectives shape the processing and the
node architecture.

Consider the objectives in complex or urban situations. Tactical sensing must detect and characterize an opposing
force without contact [find them before they find you and start an ambush]. Commanders need to discover the
opposition’s axis of advance, their extent and their front. They must detect concealed forces and establish a positive
identification before counter fire. In cases of lower intensity combat or Operations Other than War, the commanders
must provide both area and point surveillance, watching markets or bridges or key intersections, without undo risk to
soldiers from snipers and bombers. Threats may mix with civilian non-combatant forces or mobs may be the threat.
Sensing must be performed where there are hills, canyons, forests, buildings, sewers, and tunnels.

The time scale governs many aspects of tactical sensing. In high intensity combat situations forces move within the
(re)targeting time for aircraft or artillery, on the order of 10-30 minutes. Sentry and perimeter security for a
command post, possibly a parked vehicle, has a scale of minutes. If monitoring crowds or threat surges the times are
hours. Only for monitoring of compounds, snipers, or infiltration routes do times extend to days. In each of these
cases targets are only active for tens of seconds to a few minutes. For example, in seconds a soldier may move to
the window and fire. He can drive from the compound gate at 30mph and be half a mile away in a minute or around
a corner in 12 seconds.

 62

Incorporating knowledge about the world in which the sensors operate is also enormously important to their success.
This includes knowledge of the immediate tactical situation, what forces are where, their state and intent; knowledge
of the environment, especially the terrain and cultural artifacts such as roads; knowledge of what other neighboring
sensors have detected; and self knowledge including location, battery state, and data link effectiveness. We call this
Meta-Knowledge and using it is one key to successful sensing.

2. SENSING ARCHITECTURES
2.1 In-situ sensing vs. remote sensing
In order to improve detection, target tracking, and tactical inference, there are two basic sensing architectures. The
traditional architecture is what we will call ‘remote’ sensing in that the sensor system is separated from the contact
space. This is the organization of air search radars, shipboard sonars, observers with binoculars, and “spy” satellites.
The architecture we will discuss in this paper we call ‘in-situ’ sensing in which the sensors and the contacts are co-
located in the same space. We discuss situations with sensors on street corners, sensors along roads or pathways,
and sensors in/on buildings. Further, we emphasize fields of sensors and linked / cooperative sensors. Common
examples of in-situ sensors are home security alarms, mine fields, and sonar buoy fields.

Traditional methods of remote sensing and collaborative processing include array processing (beam forming, etc.),
multi-sensor information fusion, and data association and tracking. Implementation of the algorithms requires
systems with high communications bandwidth and few limits on processing power or memory. These systems often
have a single point of failure, e.g. if one element in a beam forming line array goes out, the beam patterns will be
significantly degraded. Large calibrated systems require hand emplacement and longer range radios that make these
systems more vulnerable to attack. On the other hand, a dense spatial array of networked sensing nodes can be
designed with local detection processing and distributed decision making. When designed properly, the In-Situ
approach provides graceful performance degradation as nodes become unusable. Table 1 below provides a basic
comparison of these two systems.

System Description In-Situ Sensing Remote Sensing
Single Node Capability Low High
Fault Tolerant Yes No
Performance Degradation Gradual Sudden
Bandwidth Requirements Low High
Power Requirements Low High
Cost Low High
Size Small Medium to Large
Emplacement Random Precise
Range Local Local or remote

Table 1 - Comparing in situ with remote sensing

2.2 Sensor node characteristics
If we are discussing a field of sensor nodes, what is each node like? Are all nodes the same? What is important about
the nodes? In this paper we assume that each node has these eleven components:
 1) Sensing Transducers - these are geophones, microphones, imagers, and similar items that are chosen to
support the problem at hand and the environment in which the node is deployed, including their interfaces and data
acquisition;
 2) Local Processing - a computing capability suited to required performance and to allowed power budget;
 3) Local Storage - memory for programs, parameters, signals, intermediate processing products,
environmental description, tactical situation meta-knowledge, data bases, and possibly shared items for remote
access;
 4) Node - Node Communication - two way data links between nodes in an area for sharing of data and for
coordination of processing;
 5) Node - User Communication - two way data links between nodes and user terminals for sending results
and for receiving queries, processing parameters, tactical meta-knowledge, and configuration commands;

 63

 6) Node Location - knowledge of transducer and transmitter location, locally determined or externally set,
with accuracy to support tactical goals;
 7) Time / Clock - time of day to precision required for tactical objectives and clock pulses for initiating
processing and synchronizing events;
 8) User System - the external data universe which interfaces with the node;
 9) Security - tamper security, authentication, jam and detection resistance;
 10) Software - programs structured to support many time constraints, signal processing, communication,
decision sequencing, contact movement intervals;
 11) Power Management - on-node sensors to measure and control batteries to maximize mission
performance.

Each of these characteristics will have different design parameters depending on how the nodes are to be used and
how the field is configured. This paper will not attempt to specify design settings, but will discuss factors effecting
the choice of settings.
2.3 Sensor field configurations
Sensor fields can be configured three ways with different architecture impact; unorganized, organized for query, and
organized for computing. Each configuration constrains the component characteristics of individual nodes,
constrains node-node communication characteristics, and even constrains the precision of node location.
2.3.1 Unorganized
Unorganized sensors depend on the innate local node capability, possibly with simple sharing of like data among
adjacent nodes. Typically nodes are uniform in capability and operation. Processing is node centered with each
node generating detection and classification events. Node-node communication is usually limited to simple
exchanges, alerting neighbors to wake them from a low power “sleep” state, and sharing signal processing results
among nodes to sequentially improve detection through longer exposure or through more independent ‘looks.’ The
user fuses individual detections into high level intelligence after observations are retrieved from the field. Nodes are
isolated for the complexity of tactical situations and not affected by the number of users or the number of retrievals.

This is the simplest configuration and makes the least demand on individual node architecture and performance
requirements. Difficult computing is performed in the user environment where there are more resources. Node
processors can be safely sized to the signal processing algorithms. Memory can be sized to meet real time
processing, which is limited by the physics of the detectors. Communication need be only sufficient to send
detection events to users on demand. Node-to-node exchanges are not more complex than the user query.
Responses can take tens of seconds. The simplicity of this configuration permits use of very simple radios and
software.
2.3.2 Organized for query
A configuration organized for query explicitly selects nodes from a field to meet the needs of identifying a
predetermined condition. Meta-knowledge of goals, the field environment, and contact characteristics is used to
select the nodes. Nodes may become “distinguished” and perform unique functions. Processing on nodes is
selected to match the situation, changing node to node and query to query. Tactical knowledge is sent to the nodes
as queries are posed. The field of selected nodes fuses results to derive intelligence as specified by each query.
Nodes exchange complex reports; signal processing and decision processing items, including descriptive data for
current situations, node status as to software configuration, power status, and communication neighborhood listing.
Because of local reconfiguration nodes are not isolated from the complexity of the user’s situation, and must be
capable of simultaneously processing several queries at any time for different users with different intents.

This configuration makes significant demands on node software complexity and communications. Node processors
must be sized for both signal processing and for higher level information processing. It is likely that floating point
arithmetic is required. Multi tasking of software implies memory and state resource mapping hardware in the
processor. Memory of each node must be sized for anticipated levels of simultaneous queries, each query with
unique program and data storage. On-node storage may be served by a local database shared among tasks.
Communication among nodes is much more complex than communication with users; a local network is likely
required. Responses must meet time horizons of decision algorithms, including any node-node network latency.
2.3.3 Organized for computing
A configuration organized for computing attempts to form a distributed parallel computer by associating selected
individual nodes and connecting them via local communication. Several such associations may be in force
simultaneously, each sharing some common task such as signal processing dedicated to a temporary objective. Each

 64

chosen association matches node capabilities to algorithm requirements. One example is selection of nodes to form
a detector array suited to beam forming, some nodes supplying sensor elements, some primarily processing, and
with additional nodes acting as memory.

This configuration makes even higher demands on node software complexity, on communications, and on memory
design. All the problems encountered building traditional parallel computers are now encountered in a tactical
environment. All the problems encountered building sensor arrays must be solved for imprecisely placed nodes in
uncertain local environments. In particular, problems encountered in accurately placing or knowing the location of
the node/sensor to within fractions of acoustic or seismic wavelengths must be solved to perform beam forming - not
knowing this significantly degrades performance and requires very difficult adaptive algorithms to adjust parameters
and search for the right settings. Even if beamforming is not attempted, node - node communications must meet
stringent requirements for data bandwidth and low latency. This is one of the classic problems in parallel computers
and is very, very difficult in stealthy, low power, packet radio. Similarly node memory design must accommodate
remote access by other nodes which share some data item, increasing the required memory bandwidth many fold.
Some data item, possibly a semaphore used to synchronize a protected section of shared code or data, will be
accessed by many nodes in the array. Access to the item will limit overall performance. To reduce such access
overload one strategy has been to replicate data to several (many) nodes. Replication reduces the hardware
performance constraint at the cost of synchronization; the copies must be kept consistent within algorithm time
budgets. Synchronization imposes a further communications cost and memory size cost for the extra copies. The
particular solution depends on details of the parallel algorithm. If the shared item is small, like a semaphore, size is
not an issue, but synchronizing copies of a semaphore is very costly due to the update frequency. For a general
purpose system both communications and node memory design must be of the highest capability.

2.4 Choosing sensing modes
Obviously sensing transducers must be selected which match the phenomena exhibited by contacts of interest. Most
things make noise and many threats are loud so audio is a useful sensing mode for many contacts. Many threats
travel on the ground and seismic is a useful mode to detect them. Once operational indicators and warnings are
specified, sensing modes can be readily chosen. Table 2 shows characteristics we have found useful.

Since contacts often are detectable in several modes, some design trades are required to select modes to be used
against them - vehicles may require a trade of seismic, audio, and passive infrared. Decisions are required as to
using active or only passive sensors. Deployment modes, how nodes are to be emplaced, may constrain sensor
choices. Consider an example where vehicles are to be detected. Vehicles exhibit in seismic, acoustic, IR, and
chemical modes. Since geophones require firm contact with the surface (a spike into the ground, buried, etc.) air
deployment may lead to elaborate designs to ensure insertion, especially in areas where pavement is prevalent.
These considerations may lead to choosing the simpler audio sensing which is not similarly constrained. Air
deployment may remove IR from consideration as the node may land behind an obscuring object. This example
points to the need for system design to support a sensor’s expected area of regard. A mode which may be limited by
a degraded range of detection should be avoided. However, some sensors have a very large area of regard, for
example RF intercept, and this complicates their use since nodes may have overlapping detection zones -
complicating localization algorithms and generating redundant detection events.

Modality Cost Area Of Regard Indicators Constraints
Audio (Single &
Multi Chan)

$3/Chan Omni, to 100m Persons, crowds, vehicles, velocity,
explosions, sentry

Few, Acoustic Clutter forces extensive
processing, SVP near surface constrains
range, HF absorption, Wind noise

IR/Image (10F/S
VGA)

$25 Line of Sight to
100m

Movement, characterization of
object by shape, sentry

Obstructions require manual emplacement

Geophone $20/Single
Axis/Chan

Omni to 200m Movement on Surface, floors or
roads, sentry

Manual emplacement, must have firm
contact, Disrupted by volume disturbance
(ditch) , stairs, construction joints

Motion (PIR &
UltraSound)

$7 1m to 20m Excellent for Movement, Volume
Change, sentry

Obstructions require manual emplacement

Laser Detection $50 LOS to 2Km Threat Technology, Red/Gray
classification

Low power LOS, High Power uses multipath

Radar Detection $50 LOS to 2Km Threat Technology, Red/Gray
classification

Obstruction

 65

RF (Detect by
Band)

$35 Varies, requires
control

Threat Technology, Red/Gray
classification, discriminator, timing
and event association.

Range & Direction Ambiguity

Chem/Bio $300 Downwind Aerosol Threat Few
GPS $20 Node component, Location to cm

Clock to nS
View of Sky when emplaced, co-recording at
surveyed site for precision

Table 2 - Common sensing modes & their characteristics

3. PROCESSING & ALGORITHM CONSIDERATIONS
3.1 Detection and classification processing
Typical military and surveillance audio applications include speech detection and localization, gunshot detection and
localization, ground vehicle detection and identification, and aircraft detection and identification. All of these
applications can produce a signal event containing more energy than that present in the normal background. In these
cases, it is possible to “detect” the event simply by determining when the signal energy crosses a threshold. This is
the classical optimum detection of signals in noise problem. However, this simple detection scheme presents several
difficulties in real-world applications.

The first problem with simple detection is that there is not a single constant definition of normal background noise,
especially in an outdoor environment. The noise environment is not stationary in either time or frequency content,
and varies with respect to season, time of day, temperature, humidity, and many other environmental factors.
Instead of attempting to calculate an adaptive threshold, a more productive approach is to adaptively normalize the
input data. Signal normalization can be performed across both time and frequency, which if done properly, can
provide a constant false alarm rate (CFAR) of detection with a single uniform threshold level. This type of
normalization is essential for detecting weak continuous signals and non-traditional signals such as transients.

CFAR normalization requires knowledge of the probability density function of the noise at each frequency and time
instance. The windowed short-time Fourier transform (STFT) is used to produce a linear scale tiling of the joint
time and frequency distribution of input signal energy:

 Y (t, f) = w(τ − t)y(t)
τ = −N / 2

N / 2

∑ e
− j 2πft

N

where w is the window, y is the input signal, and N is the input period. In order to use a constant and uniform
threshold, the noise power should be normalized to one, and the mean should be zero. The normalized noise
background is then:

),(

),(),(
),(2 tf

tfmtfY
tfZ

n

nn
n σ

−
=

where

fttf

fttfm
fttfY

fttfZ

n

n

n

n

frequency and at time spectrumpower noise theof variance theis),(

frequency and at time spectrumpower noise theofmean theis),(
frequency and at time valuespectralpower noiseinput theis),(

frequency and at time valuespectralpower noise normalized theis),(

2σ

Because the noise is nonstationary and superimposed signals bias any statistical calculation of the background noise,
the normalization values must be estimated using some relatively sophisticated robust statistical approaches. Several
approaches that were pioneered for narrowband detection in underwater acoustics includes the two-pass split mean
normalizer, and the three pass peak sheared normalizer. These techniques first estimate a detection statistic, perform
a nonlinear operation on the data (e.g. shear any peak over the threshold,) and then re-estimate the detection statistic.

BAE SYSTEMS has successfully improved on these normalization techniques by using adaptive multi-resolution
gamma filters 1-2 for estimating the detection statistics, and simple trackers for indicating transients verses the onset

 66

of longer period background processes. The gamma filter is a simple feedforward digital filter with gamma
functions as the tap coefficients:
 nng)1()(µµ −=
where g(n) is the coefficient at tap n and � is the smoothing coefficient. This simple filter provides an efficient
means of trading off temporal resolution for system memory.

The primary method of determining the operating point of a detection system is by plotting the Detection Error
Tradeoff (DET) curve from an empirical set of log likelihood ratio measurements. The DET curve plots the
probability of a missed detection (Pm) in percent on the Y-axis, and the probability of false alarm (Pfa) in percent on
the X-axis. A system with perfect detection and no false alarms would have an operating point at the origin.
Instead, the operating point is chosen based on the equal error rate (Pm=Pfa), or a fixed cost ratio between Pm and
Pfa. The DET curve for acoustic detection of a heavy wheeled vehicle from a 1024 Hz sampling system is shown in
Figure 3.

0.1 0.2 0.5 1 2 5 10 20 40

0.1

0.2

0.5

1

2

5

10

20

40

FalseAlarm probability (in%)

M
i
s
s

p
r
o
b
a
b
i
l
i
t
y

(
i
n

%
DETCurvefor Wheeled Vehicle, BW=500Hz

Sensor 1, EER=8.6%

Figure 3 – Example DET curve for a heavy wheeled vehicle

3.2 Signal signatures
Identification of contact signals is a continuing problem for sensor systems. The effort expended in this area over
the life of a military sensor exceeds the effort to develop and deploy sensor equipment. Success depends on
understanding the physics of signal generation and transfer through the sensing medium. As discussed in Section
2.4, not all sensor designs are equal. The expected capabilities of sensors can be used to enhance classification
capabilities and algorithms.

As an example, BAE SYSTEMS has developed signal processing, detection, and classification software for the
DARPA/ITO SenseIT Program. The sensor nodes are described later, but have two possible programmable
configurations; single channel sensing at 1024Hz and four channel sensing at 256Hz/channel. Sensors include
geophones, microphones, and passive infrared (PIR) motion detectors. Experience with reference signal databases
and with specially collected data (Figure 4) lead to the following expectations. In one channel processing mode, the
sampling rate for that channel is 1024 Hz. Only channel 1 or 2 are eligible for single channel processing. In this
case, both detection and classification will be performed and output to the detection and High Level Repositories for
multi-node decision making. In four channel processing mode, the sampling rate for each channel is 256 Hz. In this
case, the analog bandwidth after the anti-alias filter will be 80 Hz. There is little acoustic energy in the 0-80 Hz
band for any of the desired targets in the microphone channel. We will process a detection for the microphone
channel in this case, but we expect that wind noise will dominate. Therefore, the primary detection and
classification channels are listed below.

 67

Fs Sensor Detection Classification
1024 Microphone/Acoustic Yes Yes
1024 Geophone/Seismic Yes Yes
256 Microphone/Acoustic Yes/No No
256 Geophone/Seismic Yes Yes
256 PIR Motion Yes No

For the single channel acoustic and seismic processing, the high level detection and classification outputs will rely
on finding the closest point of approach (CPA) from the data record. For the multi-sensor configuration, the CPA
can be estimated from the data record. However, a more reliable CPA estimate will result from using the directional
PIR detection. We attempt to use the PIR detection as the estimate for CPA time when writing to the High Level
Repository.

Some of the expected targets will have detections from a number of different sensing modalities. The number and
type of sensing modality may aid in the classification process. A matrix of preliminary targets and expected
modality detections is given below.

Class / Sensor Mic 1024 Mic 256 Seismic PIR
Wind Yes Yes No No
Clutter Yes No/Yes No No
Voice Yes No No No
Person No No No Yes
Vehicles No/Yes Yes Yes Yes

0 20 40 60 80 100 120
0

0.1

0.2
MCAGCC1199: Heavy Wheeled Vehicle

E
n
v
e
l
o
p
e

Spec trogram: Sampling Rate=1024 HZ, Frame Rate=1 sec.

F
r
e
q

i
n

H
z

Time in sec

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

Figure 4 - Signature for a heavy wheeled vehicle

3.3 Local and distributed decision making
Supra-Bayesian information fusion combines probabilistic information from multiple sources into a single improved
decision, and analyzes the correlation among the inputs.3-5 A graphical network structure provides a description of
the causal relationships among the input and output variables. Figure 5 shows an example of a possible probabilistic
network for acoustic target detection. Each node in the graph represents a random variable (input, hidden, or
output), and connections between nodes describe the causal relationships among variables by their representative
conditional probabilities. The conditional probabilities, or likelihood functions, can be calculated using cross

 68

tabulation for discrete variables (the Bayesian network) and gradient descent for the continuous case (the adaptive
probabilistic network). When measurements become available for some of the nodes, the posterior probabilities for
the other nodes, including the output nodes, can be efficiently computed. The precise, local, and probabilistic
interpretation of these networks provides a sound mathematical basis for making inferences under uncertainty, and
allows partial or whole construction of the network topology by experts.

Local node detection and classification can be incrementally improved by the use of probabilistic (Bayesian)
networks, which have been used successfully in many signal classification and information fusion applications.
Probabilistic networks are directed graphs that give an explicit representation of the joint probability distribution
characterizing a problem domain. These networks implement Bayes' rule for the joint distribution expressed using
conditionally independent random variables:

P x

1
, ... ,x

N() = P x
1
Parents x

i()()
i=1

N

∏

An example of a two variable, a three variable, and a poly-tree structure of causally related random variables
demonstrating conditional independence is given below:

 Causal Relationship Joint Distribution
 X → Y P XY() = P Y X()P X()

 X → Y → Z P XYZ()= P Z Y()P Y X()P X()

Y

X1 X2 ... Xn P XY() = P Y X1,. .., XN() P Xi()
i =1

N

∏

Off-node Detections

Local F eature 1 Local F eature 2 Lo cal F eature N. . .

Meta-Knowledge

Target Class: {Ev ents 1-M, Noise]
Updated B eliefs: [p,q]

Priors [p,q]

Temporal Inference
and Fusion

Figure 5. Example Probabilistic Bayesian Network applied to distributed detection

 69

3.4 Architecture considerations of signal and information processing
We assume that the reader is familiar with design processes and architecture considerations of signal processing,
sizing arithmetic, data acquisition and analog components; these are mature techniques. However several items
deserve discussion for fields of sensors, especially those organized for queries.

The first special design item is provision for on-node repositories. These are organized storage of processing
parameters, intermediate results, detection/classification/localization events, and meta-knowledge. We found that
building on-node databases with qualified updates and queries is worth the resources. Repositories have multiple
index fields of formatted data to accommodate regular retrievals, and binary large objects (BLOBS) for mostly
unstructured data such as time series. While simpler table or file storage might use less resources, we found that the
uncertain nature of tactical sensing made the functionality of databases worth the extra programming and
processing. The more formal definition of repository entries made data interchanges much more efficient and saved
communications. We built Time Series Repositories for signal processing algorithms and this permits easy sharing
among neighboring nodes of data for concurrently held targets. We built Information Processing Repositories for
detection and classification algorithms. They proved useful when fusing contacts held on several sensing channels.
We built High Level Repositories for extending localization across nodes and for responding to queries. We built
Node Status Repositories for items describing individual nodes. Finally, we built Meta-Knowledge Repositories for
a wide range of tactical and operational items.

Another important special design item is time processing. Nodes require time coherence to allow contact fusion,
whether on-node or across nodes. We settled on UTM as defined by our GPS receivers. Care must be exercised
when processing time under software in PC development frameworks. The presentation format may not match the
clock capabilities, with millisecond or microsecond display precision, but a clock period of 16ms or 20ms. The
developer should investigate the software framework in the target hardware environment as the framework may
adapt to its operational capability.

3.5 Meta-Knowledge and tactical situation awareness
Meta-Knowledge is any collection of operational knowledge or intelligence parameters which describes parts of a
sensor network, its environment or condition, and which are not embedded in a fixed way in the implementation, but
supplied by external sources such as operators and legacy data systems; including knowledge discovered by the
network during operation. This definition contrasts with parameters embedded in algorithms. Some meta-
knowledge is configuration data (for instance sensor type to channel assignment) supplied by an operator. Other
operational parameters may be obtained by the node without operator support; like battery state or time or node GPS
location. The most useful meta-knowledge is about tactical and environmental items which affect decision and
information processing algorithms. Items from the physical environment such as signal transmission conditions
(wind speed which affects both expected acoustic noise characteristics and dust levels) and from the geographical
environment (such as the presence of roads or barriers) are particularly useful in qualifying detections,
classifications, and localization. They are useful in the layers of processing beginning after initial signal processing
through initial Bayesian decisions. Meta-knowledge items from doctrine of the opposition and of own forces are
useful in multi node inferences and inferences over an extended time or history. Unorganized sensor fields, those
depending on a user terminal to integrate multiple nodes, often incorporate meta-knowledge in informal ways
through the operator’s reaction to his knowledge. User query terminals for an organized field also incorporate meta-
knowledge informally. The content and sequence of queries will be made in context of a tactical picture held by the
user. Incorporation of meta-knowledge into the processing of autonomous sensor fields is a work in progress. Table
6 shows some items to consider.

Class Instance Values
Tactical Situation Force Structure, listing forces and

composition
Equipment in the Field, qualified by source, location, and time.

Contact Naming or Detection
Code Book

Common Target Type Identifier Code Book Value for efficient exchanges

Operational Settings Detection & Classification Signatures Signal Processing Parameters
 Decision Criteria Thresholds or coefficients
 Area of Regard Radio or Sensor expected range or coverage
Location Named Place Geographic Reference
 Operational Place User Terminal Location, Force Hq Location
Neighborhood Administrative Region, for instance

1MAR Sector, or Omaha Beach Red
Geographic Reference(s) - usually a list of coordinates but
occasionally other formats

 70

 Collaboration Region, for instance
“Along the Road”

Geographic Reference(s)

Collaboration Assignments &
Settings

Scripts Processing Orders, Node Order, Neighborhoods, Operational
Settings

 Neighborhoods of Interest Names
Sensing Environment Terrain Characteristics Terrain & Cover, Elevation, Barrier(s), Land/Water
Social Artifacts Roads, Dams, Buildings, Towers Code Book Value, Descriptions
Separation Criteria Geographic Barriers River, Chasm, Forest, Mountain, Building
 Target Characteristics Requires Road, Moves through forest (or not), Flies over
Confirmation Criteria Signal or Processing Changes Slowing for Corner, Climbing a Hill; matching evidence

encoded as representative of the operational area

Table 6 - Meta-Knowledge examples

4. EXAMPLES
4.1 Use of Meta-Knowledge in a query processing example scenario
A Sensor field organized for query processing is defined in Section 2.3.2. By explicitly selecting nodes to meet the
needs of a query, this organization provides more capability than retrieving from unstructured processing. The
query can supply meta-knowledge, such as geography, node relationships, timing and alerting, which improves
information and decision processing

Collaboration begins when the query selects nodes of interest and specifies an expected detection and a level of
processing. The selection may be geographic , such as nodes “along a road” or “North of a line” or “In 1Reg
Sector.” Some nodes may be distinguished, such as the start or end of a string, or those on the boundary of a region.
The query user terminal has the meta-knowledge required to associate nodes with a query condition, knowing for
instance where the road lies and the distance of interest either side the road. The query can have meta-knowledge
such as the expected travel direction, or very specific meta-knowledge such as the distinguishing elements of the
signature of a particular vehicle, not just a class. The query has meta-knowledge of the significance or criticality of
a level or type of processing; being interested in confirming a vehicle ID but having much less interest in its speed.
Use of meta-knowledge by a node may restrict processing and thus conserves battery; or expand portions of an
algorithm or parts of a chain or number of iterations or allowed error on an estimate. Meta-knowledge will
influence, possibly explicitly, which nodes share data, which nodes process, and which report to the user terminal.

Consider a query directed to a sensor field as shown in Figure 7: “Respond with classification and speed if a
Command LAV is detected on the road traveling NE toward the intersection“. Each sensor can detect and with
some reliability classify the vehicle, and can estimate basic limited motion from Doppler. The query must order the
nodes such that ‘a’ is the “initial” node; detection at ‘c’ or ‘d’ would indicate the wrong direction of travel. The
query must cause the nodes to take the extra step of estimating Time of CPA. Further the nodes must share TCPA
such that road speed may be estimated. The nodes must be supplied the extra signature information which
distinguishes a ‘Command LAV’ and they must use it in successive observations to confirm with some certainty the
classification. The nodes ‘b’ ‘c’ and ‘d’ must exchange estimates of position and speed such that a diversion to ‘5’
doesn’t cause a response. This processing proceeds much as in unorganized collaboration except for the processing
and extra algorithms associated with the meta knowledge - direction of travel depends on node ordering, speed
depends on successive TCPA and the road length between nodes vs geometric distance, detection of non-diversion (
position ‘5’) depends on estimated TCPA being satisfied at ‘d’ for position ‘6’ and confident classification depends on
many observations using extra signature values.

 71

d

a

b

c

1

2

3

4

5

Forest

6

1

a

Location

Sensor Node

Figure 7 - Example scenario laydown

4.2 Example Systems
SenseIT/WINS nodes are produced by Sensoria Inc and used in the DARPA/ITO SenseIT program first year effort
(Figure 8). New generation nodes are proposed for the second year. Each node has GPS for location and clock, and
a frequency hopping packet radio for node to node networking. Some nodes are distinguished by a high power radio
for long distance gateway service. Each node accepts four transducer channels, typically seismic, audio, PIR, and
imager. Operation is either single channel at 1K samples/sec or four channels each at 256 samples/sec. Nodes have
two on board processors. A very low power preprocessor performs continuous service for data collection and data
link control. Data is linked by serial port to a main processor with program and file storage. The main processor is
based on a MIPS R3000 which supplies very good signal processing performance. WINS nodes are designed for
extended life once emplaced. The preprocessor runs under proprietary real time control. The main processor runs
under Microsoft WinCE (2.x) SenseIT has developed a networked sensor field organized for user query under
guidelines described earlier in Section 2.3.2. Software has been developed by the SenseIT program participants but
a description of that activity is out of the scope of this paper.

Figure 8- DARPA/ITO SenseIT Program WINS Node by Sensoria Inc.

GPS

Sensor

Sensor

Pre-Proc

Serial
Port

Sig P

Query

Net

Radio

C
o
n
n
ec
to
r

W
in
C
E

Serial
Port

 72

DIMTASS nodes are produced by BAE SYSTEMS (Figure 9). Each node has GPS for location and clock, and a
Manchester coded data link to a user terminal which can control as many as 32 nodes. Each node has audio and
video/IR sensors. The on-board processor performs signal processing, detection, classification, localization, and
data management with proprietary real time software. Hardware controls data acquisition and radio functions.
DIMTASS are very inexpensive miniature nodes designed for short duration tactical applications such as Urban
Scout missions, immediate site surveillance, and traffic lane monitoring. They are designed to provide positive
identification of exposed threats and to detect and characterize concealed threats. For surveillance the nodes are
hand emplaced. For scout and other applications the nodes may be grenade launched or air deployed from UAV or
other aircraft self protection dispensers. DIMTASS is an unorganized sensor field as described in Section 2.3.1.

Figure 9 - BAE SYSTEMS DIMTASS miniature disposable nodes & user terminal

 73

5. CONCLUSION
In this paper we have indicated that smart sensor fields are feasible. We have presented design factors for the field’s
organization, for nodes, and for algorithms, most of which are well understood. We have indicated which design
trades we found very important. We have presented processing algorithms that are experimental in this application,
but have been useful in similar problems under different conditions. We have described local repositories, on-node
databases of processing products, which we found necessary for algorithms which incrementally improve detection,
classification and localization, whether node to node across a field of sensors or over time on a single node.
Repositories are also necessary when organizing the sensor field to directly respond to queries. Finally, we have
discussed incorporating Meta-Knowledge in algorithms to improve detection and classification performance.

6. ACKNOWLEDGEMENT
Work mentioned in this paper has been partially supported by DARPA Information Technology Office, Dr. Sri
Kumar, under the SenseIT Program; Contract F30602-99-C-0159.

7. REFERENCES:

1. Principe J.C., de Vries, B., de Oliveira P.G., “The Gamma Filter-A New Class of Adaptive IIR Filters with

Restricted Feedback,” IEEE Trans on Signal Processing, Vol. 41, No. 2, Feb 1993.
2. S. Beck, L. Deuser, and J. Ghosh, "Robust Classification Techniques for Acoustic Signal Analysis",

Proceedings of the IEEE Signal Processing Workshop on Statistical Signal and Array Processing , 7-9
October 1992.

3. Jacobs, R.A., “Methods for Combining Experts’ Probability Assessments,” Neural Computation 7, 1995.
4. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ, Prentice

Hall, 1994.
5. J. Ghosh, S. Beck, and C. Chu, "Evidence Combination Techniques for Robust Classification of Short-

Duration Oceanic Signals", Proceedings S.P.I.E. Conference on Adaptive Learning Systems, Vol 1706,
April 1992.

